Skip to main content

Knowledge Discovery from Constrained Relational Data: A Tutorial on Markov Logic Networks

  • Chapter
Business Intelligence (eBISS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 138))

Included in the following conference series:

Abstract

This tutorial paper gives an overview of Markov logic networks (MLNs) in theory and in practice. The basic concepts of MLNs are introduced in a semi-formal way and examined for their significance in the broader context of statistical relational learning approaches in general and Bayesian logic networks in particular. A sandbox example is discussed in order to explain in detail the meanings of input theories with weighted clauses for a MLN. Then, the setup needed for real-world applications using a recent open source prototype is introduced. Processing steps of inferencing and learning are explained in detail together with the best scaling algorithms known today. An overview on existing and upcoming application areas concludes the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://www.cs.rochester.edu/u/kautz/walksat/

  2. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley (1988)

    Google Scholar 

  3. Aarts, E., Korst, J.: Computations in massively parallel networks based on the boltzmann machine: A review. Parallel Computing 6, 129–145 (1989)

    Article  Google Scholar 

  4. Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for boltzmann machines. Cognitive Science 9, 147–169 (1985)

    Article  Google Scholar 

  5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook - Theory, Implementation and Algorithms. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Borgelt, C., Kruse, R.: Graphical Models: Methods for Data Analysis and Mining. Wiley (2002)

    Google Scholar 

  7. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artif. Intell. 171(2-3), 73–106 (2007), http://dx.doi.org/10.1016/j.artint.2006.11.003

    Article  Google Scholar 

  8. Doan, A., Niu, F., Ré, C., Shavlik, J.: User manual of tuffy 0.3. Tech. rep., University of Wisconsin-Madison (2011)

    Google Scholar 

  9. Domingos, P., Gogate, V.: Exploiting logical structure in lifted probabilistic inference (2010), http://ai.cs.washington.edu/pubs/204

  10. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical Relational Learning. In: Getoor, Taskar (eds.) [11], ch. 12, pp. 339–372 (2007)

    Google Scholar 

  11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Goodman, I., Nguyen, H., Rogers, G., Gupta, M.: Conditional Logic in Expert Systems. North Holland, Amsterdam (1990)

    Google Scholar 

  13. Heckerman, D.: A tutorial on learning with bayesian networks. Tech. rep., Microsoft Research, Redmond, Washington (1995)

    Google Scholar 

  14. Heckerman, D., Meck, C., Koller, D.: Probabilistic Entity-Relationship Models, PRMs, and Plate Models. In: Getoor, Taskar (eds.) [11], pp. 201–238 (2007)

    Google Scholar 

  15. Hintikka, J.: Knowledge and the Known. Synthese Historical Library. D. Reidel Publishing Company, Dordrecht (1974)

    Google Scholar 

  16. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Computation 14, 2002 (2000)

    Google Scholar 

  17. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages and Computation. Pearson, Upper Saddle River (2003)

    Google Scholar 

  18. Jain, D., Waldherr, S., Beetz, M.: Bayesian logic networks (extended version, included in probcog tool distribution). Tech. rep., TU München (2011), http://wwwbeetz.informatik.tu-muenchen.de/probcog-wiki/index.php

  19. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decompositions for reasoning in graphical models. Artificial Intelligence 166, 165–193 (2005)

    Article  Google Scholar 

  20. Kern-Isberner, G., Beierle, C., Finthammer, M., Thimm, M.: Probabilistic Logics in Expert Systems: Approaches, Implementations, and Applications. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 27–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In: Getoor, Taskar (eds.) [11], pp. 291–322 (2007)

    Google Scholar 

  22. Kindermann, R., Snell, J.L.: Markov Random Fields and their Applications. American Mathematical Society (1980)

    Google Scholar 

  23. Kok, S., Domingos, P.: Extracting semantic networks from text via relational clustering. Tech. rep., Department of Computer Science and Engineering, University of Washington (2009)

    Google Scholar 

  24. Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph lifting. In: Proceedings of the 26th International Conference on Machine Learning (2009)

    Google Scholar 

  25. Kok, S., Singla, P., Richardson, M., Domingos, P.: The alchemy system for statistical relational AI (2005), http://www.cs.washington.edu/ai/alchemy

  26. Kschischang, F., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  Google Scholar 

  27. Laskey, K.: Mebn: A logic for open-world probabilistic reasoning. Tech. rep., George Mason University (2006)

    Google Scholar 

  28. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Statistical Society B 50(2), 157–224 (1988)

    Google Scholar 

  29. Lowd, D., Domingos, P.: Efficient Weight Learning for Markov Logic Networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. McKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press (2003)

    Google Scholar 

  31. Mendelson, E.: Introduction to Mathematical Logic. Chapman Hall, London (1997)

    Google Scholar 

  32. Milch, B., Martha, B., Russsell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG: Probabilistic Models with Unknown Objects. In: Getoor, Taskar (eds.) [11], ch. 13, pp. 373–398 (2007)

    Google Scholar 

  33. Motik, B., Patel-Schneider, P., Parsia, B.: Owl 2 web ontology language structural specification and functional-style syntax (2009)

    Google Scholar 

  34. Neal, R.M.: Slice sampling source. Ann. Statist. 31(3), 705–767 (2003)

    Article  Google Scholar 

  35. Nguyen, H., Rogers, G.: Conditioning Operators in a Logic of Conditionals. In: Goodman (ed.) [12], pp. 159–180 (1990)

    Google Scholar 

  36. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: Scaling up statistical inference in markov logic networks using an rdbms. In: Proceedings of the VLDB Endowment, vol. 4. VLDB Endowment (2011)

    Google Scholar 

  37. Pearl, J.: Probabilistic Reasoning in intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo (1988)

    Google Scholar 

  38. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies (2006), http://ai.cs.washington.edu/www/media/papers/poon06.pdf

  39. Poon, H., Domingos, P.: Machine reading: A “killer app” for statistical relational AI. In: Proc. AAAI Conference (2010)

    Google Scholar 

  40. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  41. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society (1993)

    Google Scholar 

  42. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (1994), http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

  43. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proc. AAAI Conference, pp. 1094–1099. AAAI (2008)

    Google Scholar 

  44. Smullyan, R.: First Order Logic. Dover, New York (1995)

    Google Scholar 

  45. Spies, M.: Einführung in die Logik - Werkzeuge für Wissensrepräsentation und Wissensmanagement. Spektrum Akademischer Verlag, Heidelberg (2004)

    Google Scholar 

  46. Spies, M.: Probabilistic Relational Models for Operational Risk: A New Application Area and an Implementation Using Domain Ontologies. Studies in Theoretical and Applied Statistics, pp. 385–395. Springer, Heidelberg (2011)

    Google Scholar 

  47. Spies, M., Schacher, M., Gubser, R.: Intelligent Regulatory Compliance, ch. 12, pp. 215–238. Wiley, New York (2010)

    Google Scholar 

  48. Spies, M.: Conditional events, conditioning and random sets. IEEE Transaction on Systems, Man and Cybernetics 24(12), 1755–1763 (1994), beitr

    Article  Google Scholar 

  49. Spies, M.: Das langzeitgedächtnis als boltzmann maschine – eine simulation mentaler datenmodelle. Kognitionswissenschaft 8(2), 49–73 (1999)

    Article  Google Scholar 

  50. Spies, M.: Contextual Learning and Retrieval in a stochastic Network, vol. 2, pp. 1943–1950. ESIA-Université de Savoie (2002)

    Google Scholar 

  51. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting random walk strategies. In: Proceedings of the 19th National Conference on Artifical Intelligence, AAAI 2004, pp. 670–676. AAAI Press (2004), http://dl.acm.org/citation.cfm?id=1597148.1597256

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spies, M. (2013). Knowledge Discovery from Constrained Relational Data: A Tutorial on Markov Logic Networks. In: Aufaure, MA., Zimányi, E. (eds) Business Intelligence. eBISS 2012. Lecture Notes in Business Information Processing, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36318-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36318-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36317-7

  • Online ISBN: 978-3-642-36318-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics