Skip to main content

Machine Learning Strategies for Time Series Forecasting

  • Chapter
Business Intelligence (eBISS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 138))

Included in the following conference series:

Abstract

The increasing availability of large amounts of historical data and the need of performing accurate forecasting of future behavior in several scientific and applied domains demands the definition of robust and efficient techniques able to infer from observations the stochastic dependency between past and future. The forecasting domain has been influenced, from the 1960s on, by linear statistical methods such as ARIMA models. More recently, machine learning models have drawn attention and have established themselves as serious contenders to classical statistical models in the forecasting community. This chapter presents an overview of machine learning techniques in time series forecasting by focusing on three aspects: the formalization of one-step forecasting problems as supervised learning tasks, the discussion of local learning techniques as an effective tool for dealing with temporal data and the role of the forecasting strategy when we move from one-step to multiple-step forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, N.K., Atiya, A.F., El Gayar, N., El-Shishiny, H.: An empirical comparison of machine learning models for time series forecasting. Econometric Reviews 29(5-6) (2010)

    Google Scholar 

  2. Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)

    Article  Google Scholar 

  3. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. Adaptive Computation and Machine Learning. The MIT Press (February 2010)

    Google Scholar 

  4. Anderson, T.W.: The statistical analysis of time series. J. Wiley and Sons (1971)

    Google Scholar 

  5. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. AIR 11(1-5), 11–73 (1997)

    Google Scholar 

  6. Ben Taieb, S., Bontempi, G.: Recursive multi-step time series forecasting by perturbing data. In: Proceedings of IEEE-ICDM 2011(2011)

    Google Scholar 

  7. Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. ArXiv e-prints (August 2011)

    Google Scholar 

  8. Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of time series by combining direct and mimo strategies. In: Proceedings of the 2009 IEEE International Joint Conference on Neural Networks, Atlanta, U.S.A., pp. 3054–3061 (June 2009)

    Google Scholar 

  9. Ben Taieb, S., Sorjamaa, A., Bontempi, G.: Multiple-output modelling for multi-step-ahead forecasting. Neurocomputing 73, 1950–1957 (2010)

    Article  Google Scholar 

  10. Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of time series by combining direct and mimo strategies. In: International Joint Conference on Neural Networks (2009)

    Google Scholar 

  11. Birattari, M., Bontempi, G., Bersini, H.: Lazy learning meets the recursive least-squares algorithm. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) NIPS 11, pp. 375–381. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Bontempi, G.: Local Learning Techniques for Modeling, Prediction and Control. PhD thesis, IRIDIA- Université Libre de Bruxelles (1999)

    Google Scholar 

  13. Bontempi, G.: Long term time series prediction with multi-input multi-output local learning. In: Proceedings of the 2nd European Symposium on Time Series Prediction (TSP), ESTSP 2008, Helsinki, Finland, pp. 145–154 (February 2008)

    Google Scholar 

  14. Bontempi, G., Birattari, M., Bersini, H.: Lazy learners at work: the lazy learning toolbox. In: Proceeding of the 7th European Congress on Intelligent Techniques and Soft Computing, EUFIT 1999 (1999)

    Google Scholar 

  15. Bontempi, G., Birattari, M., Bersini, H.: Local learning for iterated time-series prediction. In: Bratko, I., Dzeroski, S. (eds.) Machine Learning: Proceedings of the Sixteenth International Conference, pp. 32–38. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  16. Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step-ahead prediction in local learning. International Journal of Forecasting (2011) (in press, corrected proof)

    Google Scholar 

  17. Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in the presence of noise. PHYD 51, 52–98 (1991)

    Google Scholar 

  18. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-Ahead Time Series Prediction. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Crone, S.F.: NN3 Forecasting Competition, http://www.neural-forecasting-competition.com/NN3/index.html (last update May 26, 2009) (visited on July 05, 2010)

  20. Crone, S.F.: NN5 Forecasting Competition, http://www.neural-forecasting-competition.com/NN5/index.html (last update May 27, 2009) (visited on July 05, 2010)

  21. Crone, S.F.: Mining the past to determine the future: Comments. International Journal of Forecasting 5(3), 456–460 (2009); Special Section: Time Series Monitoring

    Article  Google Scholar 

  22. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50(4), 987–1007 (1982)

    Article  Google Scholar 

  23. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Physical Review Letters 8(59), 845–848 (1987)

    Article  Google Scholar 

  24. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce noise. Technical report, Los Alamos National Laboratory (1988)

    Google Scholar 

  25. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3), 443–473 (2006)

    Article  Google Scholar 

  26. De Gooijer, J.G., Kumar, K.: Some recent developments in non-linear time series modelling, testing, and forecasting. International Journal of Forecasting 8(2), 135–156 (1992)

    Article  Google Scholar 

  27. Guo, M., Bai, Z., An, H.Z.: Multi-step prediction for nonlinear autoregressive models based on empirical distributions. In: Statistica Sinica, pp. 559–570 (1999)

    Google Scholar 

  28. Hand, D.: Mining the past to determine the future: Problems and possibilities. International Journal of Forecasting (October 2008)

    Google Scholar 

  29. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer (2009)

    Google Scholar 

  30. Hsu, W., Lee, M.L., Wang, J.: Temporal and spatio-temporal data mining. IGI Pub. (2008)

    Google Scholar 

  31. Ikeguchi, T., Aihara, K.: Prediction of chaotic time series with noise. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E78-A(10) (1995)

    Google Scholar 

  32. Kline, D.M.: Methods for multi-step time series forecasting with neural networks. In: Peter Zhang, G. (ed.) Neural Networks in Business Forecasting, pp. 226–250. Information Science Publishing (2004)

    Google Scholar 

  33. Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: prediction and system modelling. Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, NM (1987)

    Google Scholar 

  34. Lendasse, A. (ed.): ESTSP 2007: Proceedings (2007)

    Google Scholar 

  35. Lendasse, A. (ed.): ESTSP 2008: Proceedings. Multiprint Oy/Otamedia (2008) ISBN: 978-951-22-9544-9

    Google Scholar 

  36. Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences 26, 636–646 (1969)

    Article  Google Scholar 

  37. Matías, J.M.: Multi-output Nonparametric Regression. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 288–292. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. McNames, J.: A nearest trajectory strategy for time series prediction. In: Proceedings of the International Workshop on Advanced Black-Box Techniques for Nonlinear Modeling, pp. 112–128. K.U. Leuven, Belgium (1998)

    Google Scholar 

  39. Micchelli, C.A., Pontil, M.A.: On learning vector-valued functions. Neural Comput. 17(1), 177–204 (2005)

    Article  Google Scholar 

  40. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    Google Scholar 

  41. Owen, S.: Mahout in action. Manning (2012)

    Google Scholar 

  42. Packard, N.H., Crutchfeld, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Physical Review Letters 45(9), 712–716 (1980)

    Article  Google Scholar 

  43. Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications. Advances in Industrial Control. Springer-Verlag New York, Inc., Secaucus (2005)

    Google Scholar 

  44. Poskitt, D.S., Tremayne, A.R.: The selection and use of linear and bilinear time series models. International Journal of Forecasting 2(1), 101–114 (1986)

    Article  Google Scholar 

  45. Price, S.: Mining the past to determine the future: Comments. International Journal of Forecasting 25(3), 452–455 (2009)

    Article  Google Scholar 

  46. Priestley, M.B.: Non-linear and Non-stationary time series analysis. Academic Press (1988)

    Google Scholar 

  47. Saad, E., Prokhorov, D., Wunsch, D.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks 9(6), 1456–1470 (1998)

    Article  Google Scholar 

  48. Schuster, H.G.: Deterministic Chaos: An Introduction. Weinheim Physik (1988)

    Google Scholar 

  49. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term prediction of time series. Neurocomputing 70(16-18), 2861–2869 (2007)

    Article  Google Scholar 

  50. Sorjamaa, A., Lendasse, A.: Time series prediction using dirrec strategy. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN 2006, Bruges, Belgium, April 26-28, pp. 143–148 (2006)

    Google Scholar 

  51. Sorjamaa, A., Lendasse, A., Verleysen, M.: Pruned lazy learning models for time series prediction. In: European Symposium on Artificial Neural Networks, ESANN 2005, pp. 509–514 (2005)

    Google Scholar 

  52. Takens, F.: Detecting strange attractors in fluid turbulence. In: Dynamical Systems and Turbulence. Springer, Berlin (1981)

    Google Scholar 

  53. Tiao, G.C., Tsay, R.S.: Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting 13(2), 109–131 (1994)

    Article  Google Scholar 

  54. Tong, H.: Threshold models in Nonlinear Time Series Analysis. Springer, Berlin (1983)

    Book  Google Scholar 

  55. Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press (1990)

    Google Scholar 

  56. Tong, H., Lim, K.S.: Thresold autoregression, limit cycles and cyclical data. JRSS_B 42, 245–292 (1980)

    Google Scholar 

  57. Tran, T.V., Yang, B.-S., Tan, A.C.C.: Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems. Expert Syst. Appl. 36(5), 9378–9387 (2009)

    Article  Google Scholar 

  58. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: forecasting the future and understanding the past. Addison Wesley, Harlow (1994)

    Google Scholar 

  59. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA (1974)

    Google Scholar 

  60. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1(4), 339–356 (1988)

    Article  Google Scholar 

  61. Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14(1), 35–62 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bontempi, G., Ben Taieb, S., Le Borgne, YA. (2013). Machine Learning Strategies for Time Series Forecasting. In: Aufaure, MA., Zimányi, E. (eds) Business Intelligence. eBISS 2012. Lecture Notes in Business Information Processing, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36318-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36318-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36317-7

  • Online ISBN: 978-3-642-36318-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics