Skip to main content

Reversible and Quantum Circuit Optimization: A Functional Approach

  • Conference paper
Book cover Reversible Computation (RC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7581))

Included in the following conference series:

Abstract

The circuits produced by reversible and quantum synthesis approaches are not often optimal and post synthesis optimizations are beneficial. This paper introduces a functional approach for the optimization of reversible and quantum circuits that uses a recently introduced structure for semi-classical quantum circuits called Decision Diagram for a Matrix Function (DDMF). Experimental results are given that show that using DDMFs leads to more optimizations than are found using existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhagi, N., Hawash, M., Perkowski, M.: Synthesis of reversible circuits with no ancilla bits for large reversible functions specified with bit equations. In: Proc. Int’l Symp. on Multiple-valued Logic, pp. 39–45 (2010)

    Google Scholar 

  2. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Proc. ASP Design Automation Conf., pp. 849–854 (2010)

    Google Scholar 

  3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, M., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  4. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible circuits. In: Proc. Design Automation Conf., pp. 653–656 (2010)

    Google Scholar 

  5. Kerntopf, P., Perkowski, M., Podlaski, K.: Synthesis of reversible circuits: A view on the state-of-the-art. In: Proc. IEEE Int’l Conf. on Nanotechnology (2012)

    Google Scholar 

  6. Lukac, M., Perkowski, M., Kameyama, M.: Evolutionary quantum logic synthesis of Boolean reversible logic circuits embedded in ternary quantum space using structural restrictions. In: Proc. Int’l Conf. on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  7. Marinescu, D.C., Marinescu, G.M.: Approaching Quantum Computing. Pearson Education (2004)

    Google Scholar 

  8. Maslov, D.: Reversible Logic Synthesis. Ph.D. thesis, University of New Brunswick (2003)

    Google Scholar 

  9. Maslov, D., Dueck, G.W., Miller, D.M.: Simplification of Toffoli networks via templates. In: Symp. on Integrated Circuits and System Design, pp. 53–58 (2003)

    Google Scholar 

  10. Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans. on VLSI Systems 13, 765–769 (2005)

    Article  Google Scholar 

  11. Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the Boolean domain. IEEE Trans. on CAD 30(6), 806–816 (2011)

    Google Scholar 

  12. Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification using templates. In: Proc. Design, Automation and Test in Europe, pp. 1208–1213 (2005)

    Google Scholar 

  13. Miller, D.M.: Lower cost quantum gate realizations of multiple-control Toffoli gates. In: IEEE Pacific Rim Conference, pp. 308–313 (2009)

    Google Scholar 

  14. Miller, D.M., Wille, R., Dueck, G.W.: Synthesizing reversible circuits from irreversible specifications using Reed-Muller spectral techniques. In: Proc. Reed-Muller Workshop, pp. 87–96 (2009)

    Google Scholar 

  15. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sum-of-products. In: Proc. 5th Int’l Reed-Muller Workshop, pp. 242–250 (2001)

    Google Scholar 

  16. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  17. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Information Processing 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sasanian, Z., Miller, D.M.: Mapping a multiple-control Toffoli gate cascade to an elementary quantum gate circuit. In: Proc. Workshop on Reversible Computation, pp. 83–90 (2010)

    Google Scholar 

  19. Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In: Proc. Pacific Rim Conf. on Communications, Computers and Signal Processing, pp. 567–571 (2011)

    Google Scholar 

  20. Sasanian, Z., Miller, D.M.: Transforming MCT Circuits to NCVW Circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 77–88. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Sasanian, Z., Miller, D.M.: A new methodology for optimizing quantum realizations of reversible circuits (in preparation, 2012)

    Google Scholar 

  22. Soeken, M., Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Optimizing the mapping of reversible circuits to four-valued quantum gate circuits. In: Proc. Int’l Symp. on Multiple-valued Logic, pp. 173–178 (2012)

    Google Scholar 

  23. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Proc. Workshop on Reversible Computation, pp. 59–70 (2011)

    Google Scholar 

  24. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Proc. ASP Design Automation Conf., pp. 85–92 (2012)

    Google Scholar 

  25. Toffoli, T.: Reversible computing. Tech. Memo LCS/TM-151, MIT Lab. for Comp. Sci. (1980)

    Google Scholar 

  26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at www.revlib.org

  27. Yamashita, S., Minato, S., Miller, D.M.: DDMF: An efficient decision diagram structure for design verification of quantum circuits under a practical restriction. IEICE Trans. on Fundamentals E91-A(12), 3793–3802 (2008)

    Article  Google Scholar 

  28. Yamashita, S., Minato, S., Miller, D.M.: Synthesis of semi-classical quantum circuits. In: Proc. Workshop on Reversible Computation, pp. 93–99 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sasanian, Z., Miller, D.M. (2013). Reversible and Quantum Circuit Optimization: A Functional Approach. In: Glück, R., Yokoyama, T. (eds) Reversible Computation. RC 2012. Lecture Notes in Computer Science, vol 7581. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36315-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36315-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36314-6

  • Online ISBN: 978-3-642-36315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics