Skip to main content

Linear Inclusion and Related Problems

  • Chapter
  • First Online:
Theory of Electroelasticity
  • 1141 Accesses

Abstract

In this chapter, the linear cracks and inclusions are discussed. These problems are mainly reduced to vector Riemann-Hilbert boundary problem with many variables at first, and then the standard method to solve the Riemann-Hilbert boundary problem is used. In general case, the numerical computation is used to get the final results due to its complexity, but for some simpler problems, the analytical solutions can also be obtained. The interface cracks, rigid inclusion, and electrodes in piezoelectric bimaterials are discussed in detail. Some special problems, such as partly insulated and partly conducting crack, the nonideal crack and some other models in a homogeneous piezoelectric material, and contact zone model for interface cracks in a piezoelectric bimaterial, are also discussed shortly. Some interesting problems in engineering, such as interaction of collinear inclusions with singularity loading, interaction of an elliptic hole and a vice-crack, strip electric saturation model of an impermeable crack in a homogeneous material and a strip electric saturation model for mode-III interface crack in a bimaterial, and mode-III problem for a circular inclusion with interface cracks, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnett DM, Asaro RJ (1972) The fracture mechanics of slit-like cracks in anisotropic elastic media. J Mech Phys Solids 20:353–366

    Article  MATH  Google Scholar 

  • Beom HG, Atluri SN (1996) Near-tip fields and intensity factors for interfacial cracks in dissimilar anisotropic piezoelectric media. Int J Fract 75:163–183

    Article  Google Scholar 

  • Chung MY, Ting TCT (1996) Piezoelectric solid with an elliptic inclusion or hole. Int J Solids Struct 33:3343–3361

    Article  MathSciNet  MATH  Google Scholar 

  • Deng W, Meguid SA (1998) Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J Appl Mech 65:76–94

    Article  Google Scholar 

  • Erdogan F, Gupta GD (1972) On the numerical solution of singular integral equations. Q Appl Math 32:525–553

    Google Scholar 

  • Fulton CC, Gao H (1997) Electrical nonlinearity in fracture of piezoelectric ceramics. Appl Mech Rev 50:556–563

    Article  Google Scholar 

  • Gao C-F, Balke H (2003) Fracture analysis of circular-arc interface cracks in piezoelectric materials. Int J Solids Struct 40:3507–3522

    Article  MATH  Google Scholar 

  • Gao C-F, Wang M-Z (2000) Collinear permeable cracks between dissimilar piezoelectric materials. Int J Solids Struct 37:4969–4986

    Article  MATH  Google Scholar 

  • Gao C-F, Wang M-Z (2001) Green’s functions of an interfacial crack between two dissimilar piezoelectric media. Int J Solids Struct 38:5323–5334

    Article  MATH  Google Scholar 

  • Gao HJ, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45:491–510

    Article  Google Scholar 

  • Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802

    Article  Google Scholar 

  • Herrmann KP, Loboda VV (2000) Fracture-mechanical assessment of electrically permeable interface cracks in piezoelectric bimaterials by consideration of various contact zone models. Arch Appl Mech 70:127–143

    Article  MATH  Google Scholar 

  • Herrmann KP, Loboda VV, Govorukha VB (2001) On contact zone models for an electrically impermeable interface crack in a piezoelectric bimaterial. Int J Fract 111:203–227

    Article  Google Scholar 

  • Hou Z-Y, Li M-Z, Zhang W-G (1990) Singular integral equations and its applications. Shanghai Science and Technology Publishing House, Shanghai (in Chinese)

    Google Scholar 

  • Huang Z-Y, Kuang Z-B (2001) A first order perturbation analysis of a non-ideal crack in a piezoelectric material. Int J Solids Struct 38:7261–7281

    Article  MATH  Google Scholar 

  • Huang Z-Y, Kuang Z-B (2003) A mixed electric boundary value problem for a two-dimensional piezoelectric crack. Int J Solids Struct 40:1433–1453

    Article  MATH  Google Scholar 

  • Kuang Z-B, Ma F-S (2002) Crack tip field. Xian Jiaotong University Press, Xian (in Chinese)

    Google Scholar 

  • Kuang Z-B, Zhou Z-D, Zhou K-L (2004) Electroelastic analysis of a piezoelectric half-plane with finite surface electrodes. Int J Eng Sci 42:1603–1619

    Article  Google Scholar 

  • Lavrenchive MA, Shabat VA (1951) Method and theory of complex functions. National Technical and Theoretical Literature Press, Moscow; Лаврентьев М А, Шабат В А. Методтеориифукцийкоплекснгопеременого. Государственноеиздадельство. технико-теоретическийлитературы. Москва (1951)

    Google Scholar 

  • Liu Y-W, Fang Q-H (2004) Electroelastic interaction between a piezoelectric screw dislocation and a circular inhomogeneity with interfacial cracks. Appl Math Mech 25:1428–1436

    Article  MathSciNet  MATH  Google Scholar 

  • Loboda VV (1993) The quasi-invariant in the theory of interface cracks. Eng Fract Mech 44:573–580

    Article  Google Scholar 

  • Lynch CS, Yang W, Collier L, Suo Z, McCMeeking RM (1995) Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166:11–30

    Article  Google Scholar 

  • Muskhelishvili NI (1975) Some basic problems of mathematical theory of elasticity. Noordhoof, Leyden; Мусхелишвили Н Е. Некоторые осноные задачи математической теории упругости, Масква: Издательство академии наук СССР (1954)

    Google Scholar 

  • Muskhelishvili NI (1975) Singular integral equations. Noordhoff, Gronigen

    Google Scholar 

  • Pak YE (1990) Force on a piezoelectric screw dislocation. J Appl Mech 57:863–869

    Article  MATH  Google Scholar 

  • Ru CQ (2000) Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J Mech Phys Solids 48:693–708

    Article  MathSciNet  MATH  Google Scholar 

  • Ru CQ, Mao X (1999) Conducting cracks in a piezoelectric ceramic of limited electrical polarization. J Mech Phys Solids 47:2125–2146

    Article  MATH  Google Scholar 

  • Shen S-P, Kuang Z-B (1998) Interface crack in bi-piezothermoelastic media and the interaction with a point heat source. Int J Solids Struct 35:3899–3915

    Google Scholar 

  • Shen S-P, Kuang Z-B, Hu SL (1999) Interface crack problem of a laminated piezoelectric plate. Eur J Mech A/Solids 18:219–238

    Article  MATH  Google Scholar 

  • Shen S-P, Nishioka T, Kuang Z-B, Liu Z-X (2000) Nonlinear electromechanical interface fracture for piezoelectric materials. Mech Mater 32:57–64

    Article  Google Scholar 

  • Shen MH, Chen FM, Chen SN (2007) Piezoelectric study on singularities interacting with interfaces in an anisotropic medium. Int J Solids Struct 44:5598–5610

    Article  MathSciNet  MATH  Google Scholar 

  • Shi W-C (1997) Rigid line inclusions under anti-plane deformation and in-plane electric field in piezoelectric materials. Eng Fract Mech 56:265–274

    Article  Google Scholar 

  • Shindo Y, Narita F, Sosa H (1998) Electroelastic analysis of piezoelectric ceramics with surface electrodes. Int J Eng Sci 36:1001–1009

    Article  Google Scholar 

  • Suo Z (1990) Singularities interfaces and cracks in dissimilar anisotropic media. Proc R Soc Lond A 427:331–358

    Article  MathSciNet  MATH  Google Scholar 

  • Suo Z, Kuo CM, Barnett DM, Willis JR (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40:739–765

    Article  MathSciNet  MATH  Google Scholar 

  • Wang T-C (2000) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 37:6031–6049

    Article  MATH  Google Scholar 

  • Wang J-W, Kuang Z-B (2000) The interaction between crack and electric dipole of piezoelectricity. Acta Mech Solida Sin 13:283–289

    Google Scholar 

  • Wang J-W, Kuang Z-B (2002) The electric dipole and crack on the interface in a bi-piezoelectric material. Acta Mech Sin 34:192–199 (in Chinese)

    Google Scholar 

  • Zhang T-Y, Qian C-F, Tong P (1998) Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material. Int J Solids Struct 35:2121–2149

    Article  MATH  Google Scholar 

  • Zhang TY, Zhao M, Tong P (2001) Fracture of piezoelectric ceramics. Adv Appl Mech 38:147–289

    Article  Google Scholar 

  • Zhong Z, Meguid SA (1997) Interfacial debonding of a circular inhomogeneity in piezoelectric materials. Int J Eng Sci 34:1965–1984

    MATH  Google Scholar 

  • Zhou K-L, Zhou Z-D, Kuang Z-B (2005a) Surface electrode problems in piezoelectric materials. Adv Mater Res 9:191–198

    Article  Google Scholar 

  • Zhou Z-D, Zhao S-X, Kuang Z-B (2005b) Stress and electric displacement analysis in piezoelectric media with an elliptic hole and a small crack. Int J Solids Struct 42:2803–2822

    Article  MATH  Google Scholar 

  • Zhou Z-D, Zhao S-X, Kuang Z-B (2008) Electroelastic analysis of bi-piezoelectrics embedded interfacial rigid lines with generalized piezoelectric dislocation. Acta Mech Solida Sin 29:1–8

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuang, ZB. (2014). Linear Inclusion and Related Problems. In: Theory of Electroelasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36291-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36291-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36290-3

  • Online ISBN: 978-3-642-36291-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics