A Hierarchical Markov Model to Understand the Behaviour of Agents in Business Processes

  • Diogo R. Ferreira
  • Fernando Szimanski
  • Célia Ghedini Ralha
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 132)


Process mining techniques are able to discover process models from event logs but there is a gap between the low-level nature of events and the high-level abstraction of business activities. In this work we present a hierarchical Markov model together with mining techniques to discover the relationship between low-level events and a high-level description of the business process. This can be used to understand how agents perform activities at run-time. In a case study experiment using an agent-based simulation platform (AOR), we show how the proposed approach is able to discover the behaviour of agents in each activity of a business process for which a high-level model is known.


Process Mining Agent-Based Simulation Markov Models Expectation-Maximization Agent-Object-Relationship (AOR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    Greco, G., Guzzo, A., Pontieri, L.: Mining Hierarchies of Models: From Abstract Views to Concrete Specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 32–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity Mining by Global Trace Segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bose, R.P.J.C., Verbeek, E.H.M.W., van der Aalst, W.M.P.: Discovering Hierarchical Process Models Using ProM. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 33–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  7. 7.
    Veiga, G.M., Ferreira, D.R.: Understanding Spaghetti Models with Sequence Clustering for ProM. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 92–103. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)MathSciNetMATHGoogle Scholar
  9. 9.
    McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability and Statistics. Wiley-Interscience (2008)Google Scholar
  10. 10.
    Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. PNAS 99(suppl. 3), 7280–7287 (2002)CrossRefGoogle Scholar
  11. 11.
    Davidsson, P., Holmgren, J., Kyhlbäck, H., Mengistu, D., Persson, M.: Applications of Agent Based Simulation. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS (LNAI), vol. 4442, pp. 15–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006)CrossRefGoogle Scholar
  13. 13.
    Wagner, G.: AOR Modelling and Simulation: Towards a General Architecture for Agent-Based Discrete Event Simulation. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030, pp. 174–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Wagner, G., Nicolae, O., Werner, J.: Extending discrete event simulation by adding an activity concept for business process modeling and simulation. In: Proceedings of the 2009 Winter Simulation Conference, pp. 2951–2962 (2009)Google Scholar
  15. 15.
    Nicolae, O., Wagner, G., Werner, J.: Towards an Executable Semantics for Activities Using Discrete Event Simulation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 369–380. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Diogo R. Ferreira
    • 1
  • Fernando Szimanski
    • 2
  • Célia Ghedini Ralha
    • 2
  1. 1.IST – Technical University of LisbonPortugal
  2. 2.Universidade de Brasília (UnB)Brazil

Personalised recommendations