Supervisory Control for Business Process Management Systems

  • Mohamed Karim Aroua
  • Belhassen Zouari
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 132)


The behavior of a business process often needs to be constrained according to a given control specification, that comes to cope with new business requirements. Such a control, called supervisory control, is applied to an existing business process specification without having to re-design the running procedures. Hence, there is no need to create a new complete business process model every time the control parameters change. The objective of supervisory control is to limit the behavior of the initial business process to only desired situations. In this paper, a controller synthesis method for business processes is proposed by adapting the supervisory control theory initiated by Ramadge and Wonham. Business process models are specified by using a variant of Workflow nets, which introduces colors in order to represent different process instances and the related data. An algorithm allowing automatic generation of a controller described by a colored Petri net is provided in this paper.


Business process management supervisory control workflow nets colored Petri nets controller synthesis active controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Zouari, B., Zairi, S.: Synthesis of Active Controller for Resources Allocation Systems. In: 6th Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tool, CPN 2005 (2005)Google Scholar
  3. 3.
    Giua, A., DiCesare, F.: Petri net structural analysis for supervisory control. IEEE Transactions on Robotics and Automation 10(2), 185–195 (1994)CrossRefGoogle Scholar
  4. 4.
    Sreenivas, S., Sreenivas, R.S.: On the existence of supervisory policies that enforce liveness in discrete event dynamic systems modeled by controlled petri nets. IEEE Transactions on Automatic Control 42, 94–95 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abid, C.A., Zairi, S., Zouari, B.: Petri Nets: Applications. In: Pawlewski, P. (ed.) Supervisory Control and High-level Petri Nets, ch. 14, pp. 281–306 (2010)Google Scholar
  6. 6.
    Santos, E.A.P., Francisco, R., Vieira, A.D., de F.R. Loures, E., Busetti, M.A.: Modeling Business Rules for Supervisory Control of Process-Aware Information Systems. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 447–458. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Weske, M.: Business Process: Management Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Wang, D., Romagnoli, J.A.: Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control 15(8), 869–882 (2005)CrossRefGoogle Scholar
  9. 9.
    Kang, B., Kim, D., Kang, S.H.: Real-time business process monitoring method for prediction of abnormal termination using KNNI-based LOF prediction. Expert Systems with Applications 39, 6061–6068 (2012)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    van der Aalst, W.M.P., Jørgensen, J.B., Lassen, K.B.: Let’s Go All the Way: From Requirements Via Colored Workflow Nets to a BPEL Implementation of a New Bank System. In: Meersman, R. (ed.) OTM 2005. LNCS, vol. 3760, pp. 22–39. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Jensen, K., Rozenberg, G.: High-Level Petri Nets. Theory and application. S. Verlag (1991)Google Scholar
  13. 13.
    Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes with colored Petri nets. Computers in Industry 49(3), 267–281 (2002)CrossRefGoogle Scholar
  14. 14.
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the IEEE 77(1), 81–98 (1989)CrossRefGoogle Scholar
  15. 15.
    Giua, A., DiCesare, F.: Supervisory design using Petri nets. In: Proceedings of the 30th Conference on Decision and Control, pp. 92–97 (1991)Google Scholar
  16. 16.
    Iordache, M.V., Antsaklis, P.J.: Supervisory Control of Concurrent Systems: A Petri Net Structural Approach. Birkhäuser (2006)Google Scholar
  17. 17.
    Makungu, M., Barbeau, M., St-Denis, R.: Synthesis of controllers of process modeled as coloured petri nets. Journal Discrete Event Dynamic Systems Theory Applications 9(2), 147–169 (1999)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Li, L., Wonham, W.M.: Control of vector discrete-event systems I—The base model. IEEE Transactions on Automatic Control 38(8), 1214–1227 (1993)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A Symbolic Reachability Graph for Coloured Petri Nets. Theoretical Computer Science 176(1-2), 39–65 (1997)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zouari, B., Ghedira, K.: Synthesis of controllers using coloured petri nets and theory of regions. In: Proc. of IFAC Workshop on Discrete Event Systems (WODES 2004), pp. 231–236 (2004)Google Scholar
  21. 21.
    van der Aalst, W.M.P.: Petri net based scheduling. Computing Science Reports 95/23, Eindhoven University of Technology, Eindhoven (1995)Google Scholar
  22. 22.
    Ghaffari, A., Rezg, N., Xie, X.: Design of a live and maximally permissive Petri net controller using the theory of regions. IEEE Transactions on Robotics 19(1), 137–141 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jensen, K., Christensen, S., Huber, P., Holla, M.: “CPNtools” Reference Manual. Computer Science Department, University of Aarhus, Denmark (2003),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mohamed Karim Aroua
    • 1
  • Belhassen Zouari
    • 1
  1. 1.Faculty of Sciences of Tunis, LIP2 LaboratoryUniversity of Tunis El ManarTunisia

Personalised recommendations