From Formal Methods to Algorithmic Implementation of Human Inspired Control on Bipedal Robots

  • Shishir Nadubettu YadukumarEmail author
  • Murali Pasupuleti
  • Aaron D. Ames
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 86)


This paper presents the process of translating formal theory and methods to efficient algorithms in the context of human-inspired control of bipedal robots, with the end result being experimentally realized robust and efficient robotic walking with AMBER. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot AMBER and define a simple voltage based control law—utilizing only the human outputs and canonical walking function with parameters obtained from the optimization—for which we obtain walking in simulation. Since this controller does not require model inversion, it can be implemented efficiently in software. Moreover, applying this methodology to AMBER experimentally results in robust and efficient ”human-like” robotic walking.


Periodic Orbit Bipedal Robot Algorithmic Implementation Model Inversion Human Walking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amber walking and undergoing robustness tests,
  2. 2.
    Robustness tests conducted on AMBER,
  3. 3.
    Ames, A.D.: First Steps Toward Automatically Generating Bipedal Robotic Walking from Human Data. In: Kozłowski, K. (ed.) Robot Motion and Control 2011. LNCIS, vol. 422, pp. 89–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ames, A.D.: First steps toward underactuated human-inspired bipedal robotic walking. In: 2012 IEEE Conference on Robotics and Automation, St. Paul, Minnesota (2012)Google Scholar
  5. 5.
    Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable robotic walking with NAO via human-inspired hybrid zero dynamics. In: Hybrid Systems: Computation and Control, Beijing, China (April 2012)Google Scholar
  6. 6.
    Burg, T., Dawson, D., Hu, J., de Queiroz, M.: An adaptive partial state-feedback controller for RLED robot manipulators. IEEE Transactions on Automatic Control 41(7), 1024–1030 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  8. 8.
    Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(3), 263–273 (2010)CrossRefGoogle Scholar
  9. 9.
    Grizzle, J.W., Hurst, J., Morris, B., Park, H., Sreenath, K.: MABEL, a new robotic bipedal walker and runner. In: American Control Conference, St. Louis, MO, pp. 2030–2036 (2009)Google Scholar
  10. 10.
    Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Rev. 48, 207–304 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)CrossRefGoogle Scholar
  12. 12.
    Liu, C., Cheah, C.C., Slotine, J.E.: Adaptive jacobian tracking control of rigid-link electrically driven robots based on visual task-space information. Automatica 42(9), 1491–1501 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Manchester, I.R., Mettin, U., Iida, F., Tedrake, R.: Stable dynamic walking over uneven terrain. The International Journal of Robotics Research 30(3), 265–279 (2011)CrossRefGoogle Scholar
  14. 14.
    McGeer, T.: Passive dynamic walking. Intl. J. of Robotics Research 9(2), 62–82 (1990)CrossRefGoogle Scholar
  15. 15.
    Morimoto, J., Cheng, G., Atkenson, C., Zeglin, G.: A simple reinforcement learning algorithm for biped walking. In: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA (May 2004)Google Scholar
  16. 16.
    Nielsen, J.B.: How we walk: Central control of muscle activity during human walking. The Neuroscientist 9(3), 195–204 (2003)CrossRefGoogle Scholar
  17. 17.
    Park, H.-W., Sreenath, K., Hurst, J., Grizzle, J.W.: Identification of a bipedal robot with a compliant drivetrain: Parameter estimation for control design. IEEE Control Systems Magazine 31(2), 63–88 (2011)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Pasupuleti, M., Nadubettu Yadukumar, S., Ames, A.D.: Human-inspired underactuated bipedal robotic walking with amber on flat-ground, up-slope and uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal (2012)Google Scholar
  19. 19.
    Poulakakis, I., Grizzle, J.W.: The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper. Transaction on Automatic Control 54(8), 1779–1793 (2009)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Raibert, M.H.: Legged robots. Communications of the ACM 29(6), 499–514 (1986)CrossRefzbMATHGoogle Scholar
  21. 21.
    Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE TAC 50(7), 1025–1031 (2005)MathSciNetGoogle Scholar
  22. 22.
    Srinivasan, S., Raptis, I.A., Westervelt, E.R.: Low-dimensional sagittal plane model of normal human walking. ASME J. of Biomechanical Eng. 130(5) (2008)Google Scholar
  23. 23.
    Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shishir Nadubettu Yadukumar
    • 1
    Email author
  • Murali Pasupuleti
    • 1
  • Aaron D. Ames
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations