Skip to main content

Convex Hull Asymptotic Shape Evolution

  • Conference paper
Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

  • 5046 Accesses

Abstract

The asymptotic properties of Rapidly exploring Random Tree (RRT) growth in large spaces is studied both in simulation and analysis. The main phenomenon is that the convex hull of the RRT reliably evolves into an equilateral triangle when grown in a symmetric planar region (a disk). To characterize this and related phenomena from flocking and swarming, a family of dynamical systems based on incremental evolution in the space of shapes is introduced. Basins of attraction over the shape space explain why the number of hull vertices tends to reduce and the shape stabilizes to a regular polygon with no more than four vertices.

Supported by grants from AFOSR (FA9550-10-1-0567) and ONR (N00014-11-1-0178).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baryshnikov, Y., Zharnitsky, V.: Sub-Riemannian geometry and periodic orbits in classical billiards. Math. Res. Lett. 13(4), 587–598 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. National Academy of Sciences 105, 1232–1237 (2008)

    Article  Google Scholar 

  3. Glover, J., Rus, D., Roy, N., Gordon, G.: Robust models of object geometry. In: Proceedings of the IROS Workshop on From Sensors to Human Spatial Concepts, Beijing, China (2006)

    Google Scholar 

  4. Hsu, D., Kavraki, L.E., Latombe, J.-C., Motwani, R., Sorkin, S.: On finding narrow passages with probabilistic roadmap planners. In: Agarwal, P., et al. (eds.) Robotics: The Algorithmic Perspective, pp. 141–154. A.K. Peters, Wellesley (1998)

    Google Scholar 

  5. Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. International Journal Computational Geometry & Applications 4, 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research 30(7), 846–894 (2011)

    Article  Google Scholar 

  7. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. John Wiley and Sons (1999)

    Google Scholar 

  8. Knutson, A.: The symplectic and algebraic geometry of Horn’s problem. Linear Algebra Appl. 319(1-3), 61–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications. Springer (2003)

    Google Scholar 

  10. Lamiraux, F., Laumond, J.-P.: On the expected complexity of random path planning. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 3306–3311 (1996)

    Google Scholar 

  11. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer Science Dept., Iowa State University (October 1998)

    Google Scholar 

  12. LaValle, S.M.: Robot motion planning: A game-theoretic foundation. Algorithmica 26(3), 430–465 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), also available at http://planning.cs.uiuc.edu/

  14. Nechushtan, O., Raveh, B., Halperin, D.: Sampling-Diagram Automata: A Tool for Analyzing Path Quality in Tree Planners. In: Hsu, D., Isler, V., Latombe, J.-C., Lin, M.C. (eds.) Algorithmic Foundations of Robotics IX. STAR, vol. 68, pp. 285–301. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statistics 22, 400–407 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yu, J., Liberzon, D., LaValle, S.M.: Rendezvous Wihtout Coordinates. IEEE Transactions on Automatic Control 57(2), 421–434 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnold, M., Baryshnikov, Y., LaValle, S.M. (2013). Convex Hull Asymptotic Shape Evolution. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics