Skip to main content

Particle Dispersion in External Active Media

  • Chapter
  • First Online:
Electroweak Processes in External Active Media

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 639 Accesses

Abstract

This chapter is devoted to an analysis of the dispersion properties of photons and neutrinos in external active media: magnetic field, plasma, and magnetized plasma. Possible astrophysical manifestations of particle processes influenced by external active media are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the sign of the effective Lagrangian is significant in this case, since the additional neutrino energy is the linear in \(G_{\mathrm{F }}\) effect. In the calculation of probabilities and cross sections of weak processes, which are proportional to \(G_\mathrm{F }^2\), the sign of the effective Lagrangian does not appear.

  2. 2.

    Strictly speaking, a particle that interacts with the magnetic moment of neutrinos, and at the same time, is sterile with respect to the interactions with electrically charged plasma particles, should not be called a photon.

  3. 3.

    The sign \(\pm \) at the linear in the field term in Eq. (13) of Ref. [39] came from poorly chosen notations: the neutrino momentum in this article was \(\mathbf{{k}}\), while the antineutrino momentum was \(-\mathbf{{k}}\) (G. Raffelt, private communication).

  4. 4.

    We perform our calculations in the gauge \(A^\mu =(0,0,Bx,0)\); the magnetic field is directed along the third axis \(\mathbf{{B}} = (0, 0, B)\).

References

  1. E. Braaten, Phys. Rev. Lett. 66, 1655 (1991)

    Article  ADS  Google Scholar 

  2. I.A. Batalin, A.E. Shabad, Zh. Eksp. Teor. Fiz. 60, 894 (1971). [Sov. Phys. JETP 33, 483 (1971)]

    MathSciNet  Google Scholar 

  3. W.-Y. Tsai, Phys. Rev. D 10, 2699 (1974)

    Google Scholar 

  4. A.E. Shabad, Ann. Phys. (N.Y.) 90, 166 (1975)

    Article  ADS  Google Scholar 

  5. V.V. Skobelev, Izv. Vyssh. Uchebn. Zaved. Fiz. 10, 142 (1975)

    Google Scholar 

  6. A.E. Shabad, in Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field, ed. by V.L. Ginzburg (Nova Science Publishers, New York, 1992)

    Google Scholar 

  7. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Pergamon, Oxford, 1982)

    Google Scholar 

  8. S.L. Adler, Ann. Phys. (N.Y.) 67, 599 (1971)

    Article  ADS  Google Scholar 

  9. R.J. Stoneham, J. Phys. A 12, 2187 (1979)

    Google Scholar 

  10. A.N. Ioannisian, G.G. Raffelt, Phys. Rev. D 55, 7038 (1997)

    Google Scholar 

  11. V.N. Baier, A.I. Milstein, R.Zh. Shaisultanov, Phys. Rev. Lett. 77, 1691 (1996)

    Google Scholar 

  12. V.N. Baier, A.I. Milstein, R.Zh. Shaisultanov, Zh. Eksp. Teor. Fiz. 90, 1141 (1986). [Sov. Phys. JETP 63, 665 (1986)]

    Google Scholar 

  13. A.A. Sokolov, I.M. Ternov, V.Ch. Zhukovskii, A.V. Borisov, Quantum Electrodynamics (Mir Publishers, Moscow, 1988)

    Google Scholar 

  14. A.V. Kuznetsov, N.V. Mikheev, Electroweak Processes in External Electromagnetic Fields (Springer, New York, 2003)

    Google Scholar 

  15. M.Yu. Borovkov, A.V. Kuznetsov, N.V. Mikheev, Yad. Fiz. 62, 1714 (1999). [Phys. At. Nucl. 62, 1601 (1999)]

    Google Scholar 

  16. A.A. Gvozdev, N.V. Mikheev, L.A. Vassilevskaya, Phys. Lett. B 410, 211 (1997)

    Google Scholar 

  17. E. Braaten, D. Segel, Phys. Rev. D 48, 1478 (1993)

    Google Scholar 

  18. C.J. Horowitz, B.D. Serot, Nucl. Phys. A 464, 613 (1987)

    Google Scholar 

  19. Q.R. Ahmad et al., SNO Collab. Phys. Rev. Lett. 87, 071301 (2001)

    Article  ADS  Google Scholar 

  20. Q.R. Ahmad et al., SNO Collab. Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  21. Q.R. Ahmad et al., SNO Collab. Phys. Rev. Lett. 89, 011302 (2002)

    Article  ADS  Google Scholar 

  22. Y. Fukuda et al., Super-Kamiokande Collab. Phys. Lett. B 433, 9 (1998)

    Google Scholar 

  23. Y. Fukuda et al., Super-Kamiokande Collab. Phys. Lett. B 436, 33 (1998)

    Google Scholar 

  24. Y. Fukuda et al., Super-Kamiokande Collab. Phys. Rev. Lett. 82, 2644 (1999)

    Article  ADS  Google Scholar 

  25. K. Eguchi et al., KamLAND Collab. Phys. Rev. Lett. 90, 021802 (2003)

    Article  ADS  Google Scholar 

  26. B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957). [Sov. Phys. JETP 6, 429 (1957)]

    Google Scholar 

  27. B. Pontecorvo, Zh. Eksp. Teor. Fiz. 34, 247 (1958). [Sov. Phys. JETP 7, 172 (1958)]

    Google Scholar 

  28. J.N. Bahcall, in XXIII Physics in Collisions Conference (PIC03) (Zeuthen, Germany, 2003). (e-print astro-ph/0310030)

    Google Scholar 

  29. D. Nötzold, G. Raffelt, Nucl. Phys. B 307, 924 (1988)

    Google Scholar 

  30. J.C. D’Olivo, J.F. Nieves, P.B. Pal, Phys. Rev. D 40, 3679 (1989)

    Google Scholar 

  31. J.C. D’Olivo, J.F. Nieves, M. Torres, Phys. Rev. D 46, 1172 (1992)

    Google Scholar 

  32. G. McKeon, Phys. Rev. D 24, 2744 (1981)

    Google Scholar 

  33. A.V. Borisov, V.Ch. Zhukovskii, A.V. Kurilin, A.I. Ternov, Yad. Fiz. 41, 743 (1985). [Sov. J. Nucl. Phys. 41, 473 (1985)]

    Google Scholar 

  34. A. Erdas, G. Feldman, Nucl. Phys. B 343, 597 (1990)

    Google Scholar 

  35. E. Elizalde, E.J. Ferrer, V. de la Incera, Ann. Phys. 295, 33 (2002)

    Article  ADS  Google Scholar 

  36. A.V. Kuznetsov, N.V. Mikheev, G.G. Raffelt, L.A. Vassilevskaya, Phys. Rev. D 73, 023001 (2006)

    Google Scholar 

  37. A.V. Kuznetsov, N.V. Mikheev, Yad. Fiz. 70, 1299 (2007). [Phys. At. Nucl. 70, 1258 (2007)]

    Google Scholar 

  38. V.B. Semikoz, J.W.F. Valle, Nucl. Phys. B 425 651 (1994); Erratum: ibid. 485, 545 (1997)

    Google Scholar 

  39. P. Elmfors, D. Grasso, G. Raffelt, Nucl. Phys. B 479, 3 (1996)

    Google Scholar 

  40. A. Erdas, G.W. Kim, T.H. Lee, Phys. Rev. D 58, 085016 (1998)

    Google Scholar 

  41. E. Elizalde, E.J. Ferrer, V. de la Incera, Phys. Rev. D 70, 043012 (2004)

    Google Scholar 

  42. A. Bravo Garcia, K. Bhattacharya, S. Sahu, Mod. Phys. Lett. A 23, 2771 (2008)

    Google Scholar 

  43. A. Erdas, Phys. Rev. D 80, 113004 (2009)

    Google Scholar 

  44. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Google Scholar 

  45. P. Langacker, J. Liu, Phys. Rev. D 46, 4140 (1992)

    Google Scholar 

  46. A.V. Kuznetsov, N.V. Mikheev, A.M. Shitova, Int. J. Mod. Phys. A 26, 4773 (2011)

    Google Scholar 

  47. A. Lobanov, A. Studenikin, Phys. Lett. B 564, 27 (2003)

    Google Scholar 

  48. A. Studenikin, J. Phys. A 39, 6769 (2006)

    Google Scholar 

  49. W. Grimus, H. Neufeld, Phys. Lett. B 315, 129 (1993)

    Google Scholar 

  50. J.C. D’Olivo, J.F. Nieves, P.B. Pal, Phys. Lett. B 365, 178 (1996)

    Google Scholar 

  51. A.V. Kuznetsov, N.V. Mikheev, Mod. Phys. Lett. A 21, 1769 (2006)

    Google Scholar 

  52. A.V. Kuznetsov, N.V. Mikheev, Int. J. Mod. Phys. A 22, 3211 (2007)

    Google Scholar 

  53. D.G. Yakovlev, K.P. Levenfish, Yu.A. Shibanov, Usp. Fiz. Nauk 169, 825 (1999). [Physics-Uspekhi 42, 737 (1999)]

    Google Scholar 

  54. G. Beaudet, V. Petrosian, E.E. Salpeter, Astrophys. J. 150, 979 (1967)

    Article  ADS  Google Scholar 

  55. D.A. Dicus, Phys. Rev. D 6, 941 (1972)

    Google Scholar 

  56. H. Munakata, Y. Kohiyama, N. Itoh, Astrophys. J. 296, 197 (1985)

    Article  ADS  Google Scholar 

  57. P.J. Schinder et al., Astrophys. J. 313, 531 (1987)

    Article  ADS  Google Scholar 

  58. N. Itoh et al., Astrophys. J. 339, 354 (1989)

    Article  ADS  Google Scholar 

  59. A. Studenikin, J. Phys. A 41, 164047 (2008)

    Google Scholar 

  60. C. Lunardini, A. Yu Smirnov, Nucl. Phys. B 583, 260 (2000)

    Google Scholar 

  61. C. Lunardini, A. Yu Smirnov, Phys. Rev. D 64, 073006 (2001)

    Google Scholar 

  62. S. Sahu, W.-Y.P. Hwang, Eur. Phys. J. C 58, 609 (2008)

    Google Scholar 

  63. E.D. Commins, P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  64. A.Yu. Potekhin, Usp. Fiz. Nauk 180, 1279 (2010). [Physics-Uspekhi 53, 1235 (2010)]

    Article  Google Scholar 

  65. L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981)

    MATH  Google Scholar 

  66. H.-Th. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, B. Müller, Phys. Rept. 442, 38 (2007)

    Google Scholar 

  67. F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, Astron. Astrophys. 450, 345 (2006)

    Google Scholar 

  68. A.V. Kuznetsov, N.V. Mikheev, A.V. Serghienko, Phys. Lett. B 690, 386 (2010)

    Google Scholar 

  69. B.W. Lee, R.E. Shrock, Phys. Rev. D 16, 1444 (1977)

    Google Scholar 

  70. K. Fujikawa, R.E. Shrock, Phys. Rev. Lett. 45, 963 (1980)

    Article  ADS  Google Scholar 

  71. E.J. Ferrer, V. de la Incera, Int. J. Mod. Phys. A 19, 5385 (2004)

    Google Scholar 

  72. A.V. Borisov, I.M. Ternov, L.A. Vassilevskaya, Phys. Lett. B 273, 163 (1991)

    Google Scholar 

  73. A.V. Borisov, L.A. Vassilevskaya, I.M. Ternov, Yad. Fiz. 54, 1384 (1991). [Sov. J. Nucl. Phys. 54, 845 (1991)]

    Google Scholar 

  74. D.A. Dicus, K. Kovner, W.W. Repko, Phys. Rev. D 62, 053013 (2000)

    Google Scholar 

  75. A. Ringwald, Int. J. Mod. Phys. A 21(Suppl. 1), 12 (2006)

    Google Scholar 

  76. M.S. Andreev, N.V. Mikheev, E.N. Narynskaya, Zh. Eksp. Teor. Fiz. 137, 259 (2010). [J. Exp. Theor. Phys. 110, 227 (2010)]

    Google Scholar 

  77. R.A. Anikin, N.V. Mikheev, E.N. Narynskaya, Zh. Eksp. Teor. Fiz. 137, 1115 (2010). [J. Exp. Theor. Phys. 110, 973 (2010)]

    Google Scholar 

  78. V.Ch. Zhukovskii, T.L. Shoniya, P.A. Aminov, Zh. Eksp. Teor. Fiz. 104, 3269 (1993). [Sov. Phys. JETP 77, 539 (1993)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuznetsov, A., Mikheev, N. (2013). Particle Dispersion in External Active Media. In: Electroweak Processes in External Active Media. Springer Tracts in Modern Physics, vol 252. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36226-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36226-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36225-5

  • Online ISBN: 978-3-642-36226-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics