Towards Automated Event Studies Using High Frequency News and Trading Data

  • Nicolai Bohn
  • Fethi A. Rabhi
  • Dennis Kundisch
  • Lawrence Yao
  • Tobias Mutter
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 135)

Abstract

Event studies have a long history in academic research and were used in disciplines as diverse as economics, law, information technology, marketing, and finance. One of the main challenges is that the process of undertaking such an event study is complex and many assumptions, trade-offs and design decisions need to be made. Based on Service-Oriented Computing principles, this paper proposes a business process on how to undertake and partly automate complex event studies on effects of (un)scheduled news on stocks prices using high frequency trading and news data. The proposed business process is illustrated using a case study that shows how to identify effects of unscheduled news on stock prices in the German DAX30 index.

Keywords

Event Study Business Process High Frequency Data Unscheduled News Price Jump Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bittner, T.: An event study of the Rhenish-Westphalian coal syndicate. European Review of Economic History 9(3), 337–364 (2005)CrossRefGoogle Scholar
  2. 2.
    Bhagat, S.: Event Studies and the Law: Part I: Technique and Corporate Litigation. American Law and Economics Association 4(1), 141–168 (2002)Google Scholar
  3. 3.
    Im, K., Dow, K., Grover, V.: Research Report: A Reexamination of IT Investment and the Market Value of the Firm - An Event Study Methodology. Information Systems Research 12(1), 103–117 (2001)CrossRefGoogle Scholar
  4. 4.
    Dekimpe, M.G., Hanssens, D.M.: The Persistence of Marketing Effects on Sales. Marketing Science 14(1), 1–21 (1995)CrossRefGoogle Scholar
  5. 5.
    Cao, C., Choe, H.: Decimalization and Competition Among Exchanges: Evidence from the Toronto Stock Exchange Cross-Listed Securities. Journal of Financial Markets 1(1), 51–87 (1997)Google Scholar
  6. 6.
    Binder, J.: Measuring the effects of regulation with stock price data. The RAND Journal of Economics 16(2), 167–183 (1985)CrossRefGoogle Scholar
  7. 7.
    Brogaard, J.: High frequency trading and its impact on market quality. Northwestern University Kellogg School of Management. Working Paper (2010)Google Scholar
  8. 8.
    Kothari, S.P., Warner, J.: The econometrics of event studies. Working Paper (2004)Google Scholar
  9. 9.
    MacKinlay, A.C.: Event Studies in Economics and Finance. Journal of Economic Literature 35(1), 13–39 (1997)Google Scholar
  10. 10.
    Binder, J.: The event study methodology since 1969. Review of Quantitative Finance and Accounting 11(2), 111–137 (1998)CrossRefGoogle Scholar
  11. 11.
    Corrado, C.: Event studies: a methodology review. Accounting & Finance 31(1), 207–234 (2011)CrossRefGoogle Scholar
  12. 12.
    Lee, S.S., Mykland, P.A.: Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics. Review of Financial Studies 21(6), 2535–2563 (2008)CrossRefGoogle Scholar
  13. 13.
    Bradley, D., Clarke, J., Lee, S.S.: Information Disclosure and Intraday Price Discovery: Evidence from Jumps. AFA Denver Meetings Paper (2011)Google Scholar
  14. 14.
    Campbell, J., Lo, A., MacKinlay, A.: The econometrics of financial markets, vol. 1. University Press, Princeton (1997)Google Scholar
  15. 15.
    Fama, E.: Efficient capital markets: A review of theory and empirical work. The Journal of Finance 25(2), 383–417 (1970)CrossRefGoogle Scholar
  16. 16.
    Fama, E., Fisher, L., Jensen, M.: The adjustment of stock prices to new information. International Economic Review 10(1), 1–28 (1969)CrossRefGoogle Scholar
  17. 17.
    Brown, S., Warner, J.: Measuring security price performance. Journal of Financial Economics 8(3), 205–258 (1980)CrossRefGoogle Scholar
  18. 18.
    Dyckman, T., Philbrick, D., Stephan, J.A.: Comparison of Event Study Methodologies Using Daily Stock Returns: A Simulation Approach. Journal of Accounting Research 22(1), 1–30 (1984)CrossRefGoogle Scholar
  19. 19.
    Morse, D.: An econometric analysis of the choice of daily versus monthly returns in tests of information content. Journal of Accounting Research 22(2), 605–623 (1984)CrossRefGoogle Scholar
  20. 20.
    Brown, S., Warner, J.: Using daily stock returns* 1: The case of event studies. Journal of Financial Economics 14(1), 3–31 (1985)CrossRefGoogle Scholar
  21. 21.
    Hansen, P., Lunde, A.: Realized variance and market microstructure noise. Journal of Business and Economic Statistics 24(2), 127–161 (2006)CrossRefGoogle Scholar
  22. 22.
    Groth, S.S., Muntermann, J.: An intraday market risk management approach based on textual analysis. Enterprise Risk and Security Management: Data, Text and Web Mining. Decision Support Systems 50(4), 680–691 (2011)CrossRefGoogle Scholar
  23. 23.
    McWilliams, T., McWilliams, V.: Another Look At Theoretical And Empirical Issues In Event Study Methodology. Journal of Applied Business Research 16(3), 1–12 (2011)Google Scholar
  24. 24.
    Boehmer, E., Masumeci, J., Poulsen, A.B.: Event-study methodology under conditions of event-induced variance. Journal of Financial Economics 30(2), 253–272 (1991)CrossRefGoogle Scholar
  25. 25.
    Engle, R., Gallo, G.: A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131(1), 3–27 (2006)CrossRefGoogle Scholar
  26. 26.
    Joulin, A., Lefevre, A., Grunberg, D.: Stock price jumps: news and volume play a minor role. Wilmott Magazine, 1–7 (2008)Google Scholar
  27. 27.
    Hanousek, J., Kočenda, E., Novotný, J.: The identification of price jumps. Working Paper, pp. 1–49 (2011)Google Scholar
  28. 28.
    Barndorff-Nielsen, O.E., Shephard, N.: Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics 2(1), 1–37 (2004)CrossRefGoogle Scholar
  29. 29.
    Aït-Sahalia, Y., Jacod, J.: Testing for jumps in a discretely observed process. The Annals of Statistics 37(1), 184–222 (2009)CrossRefGoogle Scholar
  30. 30.
    Pirino, D., Renò, R.: Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics 159(2), 276–288 (2010)CrossRefGoogle Scholar
  31. 31.
    Harris, L.: Trading and exchanges: Market microstructure for practitioners. Oxford University Press, USA (2003)Google Scholar
  32. 32.
    Clements, M., Singh, H.: An analysis of trading in target stocks before successful takeover announcements. Journal of Multinational Financial Management 21(1), 1–17 (2011)CrossRefGoogle Scholar
  33. 33.
    Patell, J., Wolfson, M.: The intraday speed of adjustment of stock prices to earnings and dividend announcements. Journal of Financial Economics 13(2), 223–252 (1984)CrossRefGoogle Scholar
  34. 34.
    Nikkinen, J., Omran, M., Sahlström, P.: Global stock market reactions to scheduled U.S. macroeconomic news announcements. Global Finance Journal 17(1), 92–104 (2006)CrossRefGoogle Scholar
  35. 35.
    Patell, J.: Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 246–276 (1976)Google Scholar
  36. 36.
    Corrado, C.: A nonparametric test for abnormal security-price performance in event studies. Journal of Financial Economics 23(2), 385–395 (1989)CrossRefGoogle Scholar
  37. 37.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)CrossRefGoogle Scholar
  38. 38.
    Aït-Sahalia, Y.: Disentangling diffusion from jumps. Journal of Financial Economics 74(3), 487–528 (2004)CrossRefGoogle Scholar
  39. 39.
    Rabhi, F.A., Yao, L., Guabtni, A.: ADAGE: A Framework for Supporting User-Driven Ad-Hoc Data Analysis Processes. Computing 94(6), 489–519 (2012)CrossRefGoogle Scholar
  40. 40.
    Andersen, T., Bollerslev, T.: Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance 4(2), 115–158 (1997)CrossRefGoogle Scholar
  41. 41.
    Harju, K., Hussain, S.: Intraday seasonalities and macroeconomic news announcements. European Financial Management 17(2), 367–390 (2011)CrossRefGoogle Scholar
  42. 42.
    Boudt, K., Croux, C., Laurent, S.: Robust estimation of intraweek periodicity in volatility and jump detection. Journal of Empirical Finance 18(2), 353–367 (2011)CrossRefGoogle Scholar
  43. 43.
    Engle, R., Gallo, G.: A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131(1-2), 3–27 (2006)CrossRefGoogle Scholar
  44. 44.
    Jiang, G., Oomen, R.: Testing for jumps when asset prices are observed with noise-a. Journal of Econometrics 144(2), 352–370 (2008)CrossRefGoogle Scholar
  45. 45.
    Bouchaud, J.: An introduction to statistical finance. Fundamental Problems in Statistical Physics. Physica A: Statistical Mechanics and its Applications 313(1), 238–251 (2002)CrossRefGoogle Scholar
  46. 46.
    Schwab, M., Karrenbach, N., Claerbout, J.: Making scientific computations reproducible. Computing in Science & Engineering 2(6), 61–67 (2000)CrossRefGoogle Scholar
  47. 47.
    Peng, R.D.: Reproducible Research in Computational Science. Science 334(6060), 1226–1227 (2011)CrossRefGoogle Scholar
  48. 48.
    Jasny, B.R., Chin, G., Chong, L.: Again, and Again, and Again. Science 334(6060), 1225 (2011)CrossRefGoogle Scholar
  49. 49.
    Cowan Research L.C.: Who Are Eventus Subscribers, http://www.eventstudy.com/Who-Are-Eventus-Subscribers.htm (accessed July 16, 2012)
  50. 50.
    Center for Research in Security Prices: CRSP database products, http://www.crsp.com/products/index.html (Accessed July 18, 2012)
  51. 51.
    Cowan Research, L.C: Using Non-CRSP Data in Eventus 8, http://www.eventstudy.com/NonCRSPEventus8.pdf (accessed July 18, 2012)
  52. 52.
    White, S.A., Miers, D.: BPMN Modelling and Reference Guide: Understanding and Using BPMN, Future Strategies, Lighthouse Point, Florida (2008)Google Scholar
  53. 53.
    Chen, C., Mohan, N.: Timing the disclosure of information: Management’s view of earnings announcements. Financial Management, 63–69 (1994)Google Scholar
  54. 54.
    Frankfurter, G.M., McGoun, E.G.: The event study: An industrial strength method. International Review of Financial Analysis 2(2), 121–141 (1993)CrossRefGoogle Scholar
  55. 55.
    Fisher, L., Lorie, J.: Rates of return on investments in common stocks. The Journal of Business 37(1), 1–21 (1964)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolai Bohn
    • 1
  • Fethi A. Rabhi
    • 2
  • Dennis Kundisch
    • 1
  • Lawrence Yao
    • 2
  • Tobias Mutter
    • 1
  1. 1.Faculty of Business Administration and EconomicsUniversity of PaderbornPaderbornGermany
  2. 2.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations