Skip to main content

Applications to reductive Lie algebras

  • Chapter
Clifford Algebras and Lie Theory

Abstract

In this chapter, we specialize to the case where \(\mathfrak{g}\) is a complex reductive Lie algebra. Let \(\mathfrak{t}\subset\mathfrak{g}\) be a Cartan subalgebra. We will discuss the Harish-Chandra projection \(\mathsf{hc}_{U}:\ U(\mathfrak{g})\to S(\mathfrak{t})\) for the enveloping algebra, its counterpart \(\mathsf{hc}_{\mathrm{Cl}}:\ \mathrm{Cl}(\mathfrak{g})\to\mathrm{Cl}(\mathfrak{t})\) for the Clifford algebra, and their interaction under the natural algebra morphism \(\gamma:\ U(\mathfrak{g})\to\mathrm{Cl}(\mathfrak{g})\). A number of classical results, such as the Freudenthal–de Vries “strange formula”, will be proved in this spirit. We discuss the ρ-representation and its interpretation in terms of the spin representation. Following Kostant’s work, we consider applications of the cubic Dirac operator for equal rank pairs. This includes the Gross–Kostant–Ramond–Sternberg results on multiplets of representations for equal rank Lie subalgebras, as well as aspects of Dirac induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suppose \(\mathfrak{g}\) is simple, and let G be the compact, simply connected Lie group with Lie algebra \(\mathfrak{g}_{\mathbb{R}}\). Then the Lie algebras \(\mathfrak{k}_{\mathbb{R}}\) obtained by this procedure are the Lie algebras of centralizers K of elements g=exp(ξ), where ξ is a vertex of the Weyl alcove of G. Up to conjugacy, these are precisely the centralizers that are semisimple.

References

  1. M.F. Atiyah and G.B. Segal. Twisted K-theory. Ukr. Mat. Visn., 1(3):287–330, 2004.

    MathSciNet  MATH  Google Scholar 

  2. Y. Bazlov. The Harish-Chandra isomorphism for Clifford algebras. Preprint, 2008. arXiv:0812.2059.

  3. N. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators, Volume 298 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1992.

    Book  MATH  Google Scholar 

  4. A. Borel and J. de Siebenthal. Les sous-groupes fermés connexes de rang maximum des groupes de Lie clos. Comment. Math. Helv., 23:200–223, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.J. Duistermaat and J.A.C. Kolk. Lie Groups. Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

  6. E.B. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Mat. Sb. N.S., 30(72):349–462, 1952.

    MathSciNet  Google Scholar 

  7. D. Freed, M. Hopkins, and C. Teleman. Loop groups and twisted K-theory III. Ann. Math. (2), 174(2):947–1007, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Greub, S. Halperin, and R. Vanstone. Connections, Curvature, and Cohomology. Academic Press, New York, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces.

    MATH  Google Scholar 

  9. B. Gross, B. Kostant, P. Ramond, and S. Sternberg. The Weyl character formula, the half-spin representations, and equal rank subgroups. Proc. Natl. Acad. Sci. USA, 95(15):8441–8442, 1998 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-S. Huang and P. Pandzic. Dirac Operators in Representation Theory. Birkhäuser, Boston, 2006.

    MATH  Google Scholar 

  11. J. Humphreys. Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  12. V. Kac, P. Möseneder Frajria, and P. Papi. Multiplets of representations, twisted Dirac operators and Vogan’s conjecture in affine setting. Adv. Math., 217(6):2485–2562, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  13. A.W. Knapp. Lie Groups Beyond an Introduction, Volume 140 of Progress in Mathematics. Birkhäuser Boston, Boston, 2nd edition, 2002.

    MATH  Google Scholar 

  14. B. Kostant. Lie algebra cohomology and generalized Schubert cells. Ann. Math. (2), 77:72–144, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Kostant. A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J., 100(3):447–501, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Kostant. A generalization of the Bott–Borel–Weil theorem and Euler number multiplets of representations. In G. Dito and D. Sternheimer, editors, Conference Moshe Flato 1999, Volume 1, pages 309–325. Kluwer Academic, Dordrecht, 2000.

    Google Scholar 

  17. J.-L. Koszul. Sur un type d’algèbres différentielles en rapport avec la transgression. In Colloque de topologie (espaces fibrés) (Bruxelles), pages 73–81, 1950. Georges Thone, Liège, 1951.

    Google Scholar 

  18. G. Landweber. Twisted representation rings and Dirac induction. J. Pure Appl. Algebra, 206:21–54, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Landweber and R. Sjamaar. Character formulae and GKRS multiplets in equivariant K-theory. Preprint, 2011. arXiv:1107.3578.

  20. E. Meinrenken. On the quantization of conjugacy classes. Enseign. Math., 55:33–75, 2009.

    MathSciNet  MATH  Google Scholar 

  21. A.L. Onishchik and E.B. Vinberg. Lie Groups and Lie Algebras III. Springer, Berlin, 1994.

    Book  MATH  Google Scholar 

  22. J. Tits. Sous-algèbres des algèbres de Lie semi-simples (d’après V. Morozov, A. Malčev, E. Dynkin et F. Karpelevitch). In Séminaire Bourbaki, Volume 3, pages Exp. No. 119, 197–214. Soc. Math. France, Paris, 1995.

    Google Scholar 

  23. A. Wasserman. Kac–Moody and Virasoro algebras, lecture notes. Preprint, 1998. arXiv:1004.1287.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meinrenken, E. (2013). Applications to reductive Lie algebras. In: Clifford Algebras and Lie Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36216-3_8

Download citation

Publish with us

Policies and ethics