Skip to main content

Abstract

The chapter starts with a discussion of the Clifford group Γ(V), for any vector space V with a non-degenerate symmetric bilinear form B. Using the norm homomorphism on the Clifford group, we define the spin group Spin(V), and discuss its topology for the cases V=ℝn,m and V=ℂn. Following a discussion of Clifford modules in general, we focus on the case that the bilinear form is split. We show that in this case, there is an essentially unique irreducible Clifford module, the so-called spinor module. We give a discussion of pure spinors and their relation with Lagrangian subspaces, followed by a proof of Cartan’s triality principle. The classification of spinor modules for the case V=ℂn is used to derive interesting properties of the spin groups, with applications to compact Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In more detail, recall that the bilinear form on \(\varDelta _{7}\cong{\mathsf{S}}_{8}^{\bar{0}}\) is ℂl(7)≅ℂl 0(8)-invariant. Restricting to ℂl(6)⊆ℂl(7), we obtain a ℂl(6)-invariant bilinear form on \(\varDelta _{6}^{+}\oplus \varDelta _{6}^{-}\cong {\mathsf{S}}_{6}\), which must agree with the canonical bilinear form up to scalar multiple. But the latter vanishes on the even and odd part of S 6.

References

  1. J.F. Adams. Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1996.

    MATH  Google Scholar 

  2. I. Agricola. Old and new on the exceptional Lie group G 2. Not. Am. Math. Soc., 55:922–929, 2008.

    MathSciNet  MATH  Google Scholar 

  3. J.C. Baez. The octonions. Bull., New Ser., Am. Math. Soc., 39(2):145–205, 2002 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Bröcker and T. tom Dieck. Representations of Compact Lie Groups, Volume 98 of Graduate Texts in Mathematics. Springer, Berlin, 1985.

    Book  MATH  Google Scholar 

  5. E. Cartan. The Theory of Spinors. MIT Press, Cambridge, 1967. Translation of 1938 French original.

    Google Scholar 

  6. C. Chevalley. The Algebraic Theory of Spinors and Clifford Algebras. Springer, Berlin, 1997. Collected works. Vol. 2.

    MATH  Google Scholar 

  7. J.J. Duistermaat and J.A.C. Kolk. Lie Groups. Springer, Berlin, 2000.

    Book  MATH  Google Scholar 

  8. I. Porteus. Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  9. E. Study. Geometrie der Dynamen. Teubner, Leipzig, 1903.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meinrenken, E. (2013). The spin representation. In: Clifford Algebras and Lie Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36216-3_3

Download citation

Publish with us

Policies and ethics