Skip to main content

The Hopf–Koszul–Samelson Theorem

  • Chapter
Clifford Algebras and Lie Theory

Abstract

Suppose \(\mathfrak{g}\) is a complex reductive Lie algebra. The invariant subspace of the exterior algebra \(\wedge(\mathfrak{g})\) is a graded super Hopf algebra; let \(P(\mathfrak{g})\subset \wedge(\mathfrak{g})^{\mathfrak{g}}\) be the graded subspace of primitive elements. The central results in this chapter are the Hopf–Koszul–Samelson Theorem identifying \((\wedge\mathfrak{g})^{\mathfrak{g}}\) with the exterior algebra over \(P(\mathfrak{g})\), and the Transgression Theorem, showing that the space of primitive elements coincides with the image of the transgression map for the Weil algebra. The proofs make extensive use of Lie algebra homology and cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Cartan. La transgression dans un groupe de Lie et dans un fibré principal. In Colloque de topologie (espaces fibrés) (Bruxelles), pages 73–81, 1950, centre belge de recherches mathématiques, Georges Thone, Liège, Masson et Cie., Paris.

    Google Scholar 

  2. V. Chevalley. The Betti numbers of the exceptional groups. In Proceedings of the International Congress of Mathematicians, Volume 2, pages 21–24, 1950.

    Google Scholar 

  3. W. Greub, S. Halperin, and R. Vanstone. Connections, Curvature, and Cohomology. Academic Press, New York, 1976. Volume III: Cohomology of principal bundles and homogeneous spaces.

    MATH  Google Scholar 

  4. B. Kostant. Clifford algebra analogue of the Hopf–Koszul–Samelson theorem, the ρ-decomposition \(\mathrm{C}(\mathfrak{g})=\mathrm {End}\,{V}\sb{\rho}\otimes \mathrm{C}(\mathrm{P})\), and the \(\mathfrak{g}\)-module structure of \(\bigwedge\mathfrak{g}\). Adv. Math., 125(2):275–350, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-L. Koszul. Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. Fr., 78:65–127, 1950.

    MathSciNet  MATH  Google Scholar 

  6. J. Leray. Sur l’homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux. In Colloque de topologie (espaces fibrés) (Bruxelles), pages 101–115, 1950. Centre belge de recherches mathématiques, Georges Thone, Liège, Masson et Cie., Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meinrenken, E. (2013). The Hopf–Koszul–Samelson Theorem. In: Clifford Algebras and Lie Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36216-3_10

Download citation

Publish with us

Policies and ethics