Skip to main content

Reference Electrodes for Aqueous Solutions

  • Chapter
  • First Online:
Handbook of Reference Electrodes

Abstract

The standard hydrogen electrode (SHE) acts as a primary reference in electrochemistry. The standard potentials of all other reference electrodes are linked to that of the SHE at the same temperature. The SHE contribution to the cell potential is by convention zero at all temperatures (see Chap. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The value for \( p^{{\rlap{-}{\mathrm{ o}}}} -=100\mathrm{ kPa} \) (standard state pressure) is the IUPAC recommended value since 1982 [2]. Prior to 1982 the standard pressure was usually taken to be \( p^{{\rlap{-}{\mathrm{ o}}}} -=10\text{1,325}\mathrm{ Pa} \) (=1 atm, called the standard atmosphere). In the primary method for pH and general in electrochemistry \( p^{{\rlap{-}{\mathrm{ o}}}} -=10\text{1,325}\mathrm{ Pa} \) is still the preferred standard.

  2. 2.

    In [19] the empirical relation for the bubbler depth correction is given in mmHg as 0.4h/13.6, and the depth of immersion of the bubbler in mm.

  3. 3.

    The widely used buffer solution potassium hydrogen phthalate (pH = 4.1 at 25 °C) cannot be measured by the platinum hydrogen electrode due to reduction of the phthalate. In this case a palladium electrode is used.

References

References to Sect. 5.1

  1. Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor AJ (2008) Quantities, units and symbols in physical chemistry, IUPAC Green Book, 3rd edn. IUPAC & RSC Publishing, Cambridge, p 74, 2nd printing

    Google Scholar 

  2. Cox JD (1982) Pure Appl Chem 54:1239

    Google Scholar 

  3. Wanner H, Önsted E (2000) Standards and conventions for TDB Publications. OECD Nuclear Energy Agency, p 3

    Google Scholar 

  4. Nernst W (1900) Z Elektrochem7:253

    Google Scholar 

  5. Galster H (1991) pH measurement: fundamentals, methods, applications, instrumentation. Weinheim, VCH, p 68

    Google Scholar 

  6. Inzelt G (2008) Electrodes. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 202–205

    Google Scholar 

  7. Kahlert H (2010) Reference elctrodes. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 263–264

    Google Scholar 

  8. Bates RG (1973) Determination of pH—theory and practise. Wiley, New York, pp 280–294

    Google Scholar 

  9. RHE. Available from http://www.gaskatel.de/english/hydroflex/theory.html

  10. Schwarz J, Hörig A, Oelssner W, Vonau W, Kohnke H-J (2012) GIT 56:99

    CAS  Google Scholar 

  11. Buck RP, Rondinini S, Baucke FGK, Camoes MF, Covington AK, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Pure Appl Chem 74:2169

    CAS  Google Scholar 

  12. Spitzer P, Werner B (2002) Anal Bioanal Chem 374:787

    CAS  Google Scholar 

  13. Bates RG, Robinson RA (1980) J Solution Chem 9:455

    CAS  Google Scholar 

  14. Harned HS, Robinson RA (1928) J Am Chem Soc 50:3157

    CAS  Google Scholar 

  15. Mariassy M, Pratt KW, Spitzer P (2009) Metrologia 46:199

    CAS  Google Scholar 

  16. Spitzer P, Eberhardt R, Schmidt I, Sudmeier U (1996) Fresenius J Anal Chem 356:178

    CAS  Google Scholar 

  17. Hills GJ, Ives DJG (1951) J Chem Soc 318:305

    Google Scholar 

  18. Spitzer P, Pratt KW (2011) J Solid State Electrochem 15:69

    CAS  Google Scholar 

  19. Hills GJ, Ives DJG (1961) The hydrogen electrode. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, p 96

    Google Scholar 

  20. Wagner W, Pruss A (2002) Phys Chem Ref Data 31:387

    CAS  Google Scholar 

  21. Tables of physical and chemical constants. Available from http://www.kayelaby.npl.co.uk/chemistry/3_4/3_4_2.html

  22. IAPWS-97. Available from http://www.iapws.org/newform.htm

References to Sect. 5.2

  1. Shumilova NA, Zhutaeva GV (1978) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements. Dekker, New York

    Google Scholar 

  2. Harned HS, Ehlers RW (1933) J Am Chem Soc 55:2179

    CAS  Google Scholar 

  3. Bates RG, Bower VE (1954) J Res Natl Bur Stand 53:282

    Google Scholar 

  4. Harned HS, Paxton TR (1953) J Phys Chem 57:531

    CAS  Google Scholar 

  5. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. Marcel Dekker, New York, p 304

    Google Scholar 

  6. Greeley RS, Smith WT, Lietzke MH, Stanghton RW (1960) J Phys Chem 64:652

    CAS  Google Scholar 

  7. Bates RG, Macaskill JB (1978) Pure Appl Chem 50:1701

    Google Scholar 

  8. Brewer PJ, Leese RJ, Brown RJC (2012) Electrochim Acta 71:252

    CAS  Google Scholar 

  9. Guiomar Lito MJ, Filomena Camoes M (2009) J Solution Chem 38:1471

    Google Scholar 

  10. Bates RG (1973) Determination of pH. Theory and practice, 2nd edn. Wiley, New York

    Google Scholar 

  11. Brewer PJ, Brown RJC (2010) Sensors 10:2202

    CAS  Google Scholar 

  12. Brown RJC, Milton MJT (2005) Accred Qual Assur 10:352

    CAS  Google Scholar 

  13. Brewer PJ, Stoica D, Brown RJC (2011) Sensors 11:8072

    CAS  Google Scholar 

  14. East GA, del Valle MA (2000) J Chem Educ 77:97

    CAS  Google Scholar 

  15. Thomas JM (1999) J Chem Educ 76:97

    CAS  Google Scholar 

  16. Inamdar SN, Bhat MA, Haram SK (2009) J Chem Educ 86:355

    CAS  Google Scholar 

  17. Escoffier C, Maguire PD, Mahony C, Graham WG, MacAdams EM, McLaughlin JA (2002) J Electrochem Soc 149:H98

    CAS  Google Scholar 

  18. Oijerholm J, Forsberg S, Hermansson HP, Ullberg M (2009) J Electrochem Soc 156:P56

    Google Scholar 

  19. Oh SH, Bahn CB, Hwang IS (2003) J Electrochem Soc 150:E321

    CAS  Google Scholar 

  20. Kim HR, Kim YD, Kim KI, Shim JH, Nam H, Kong BK (2004) Sens Actuators B 97:348

    Google Scholar 

  21. Ito S, Hachiya H, Baba K, Asano Y, Wada H (1995) Talanta 42:1685

    CAS  Google Scholar 

  22. Ito S, Kobayashi F, Baba K, Asano Y, Wada H (1996) Talanta 40:135

    Google Scholar 

  23. Gao P, Jin XB, Wang DH, Wu XH, Chen GZ (2005) J Electroanal Chem 579:321

    CAS  Google Scholar 

  24. Shankenberg U, Lisec T, Hintsche R, Kuna I, Uhlig A, Wagner B (1996) Sens Actuators B 34:476

    Google Scholar 

  25. Eine K, Kjelstrup S, Nagy K, Syverud K (1997) Sens Actuators B 44:381

    Google Scholar 

  26. Johnsen EE, Kjelstrup Ratkje S, Førland T, Førland KS (1990) Z Physik Chem 168:101

    CAS  Google Scholar 

  27. Beer J, Kjelstrup Ratkje S, Olsen GF (1991) Z Physik Chem 174:179

    Google Scholar 

  28. Moussy F, Harrison DJ (1994) Anal Chem 66:674

    CAS  Google Scholar 

  29. Galster H (1980) GIT Fachz Lab 24:744

    Google Scholar 

  30. Guth U, Gerlach F, Decker M, Oelßner W, Vonau W (2009) J Solid State Electrochem 13:27

    CAS  Google Scholar 

  31. Gabel J, Vonau W, Lange R, Barthold K (2000) GIT-Laborfachzeitschrift 45:366

    Google Scholar 

  32. Ciobanu M, Wilburn JP, Buss NL, Ditavong P, Lowy DA (2002) Electroanalysis 14:989

    CAS  Google Scholar 

  33. Ciobanu M, Wilburn JP, Lowy DA (2004) Electroanalysis 16:1351

    CAS  Google Scholar 

  34. Kakiuchi T, Yoshimatsu T, Nishi N (2007) Anal Chem 79:7187

    CAS  Google Scholar 

  35. Bakker E (1999) Electroanalysis 11:788

    CAS  Google Scholar 

  36. Lindner E (2000) Anal Chem 68:336A

    Google Scholar 

  37. Lee HJ, Hong US, Lee DK, Shin JH, Nam H, Cha GS (1998) Anal Chem 70:3377

    CAS  Google Scholar 

  38. Valdes-Ramirez G, Alvarez-Romero G, Galan-Vidal CA, Hernandez-Rodriguez PR, Ramirez-Silva MT (2005) Sens Actuators B 110:264

    Google Scholar 

  39. Kisiel A, Marcisz H, Michalska A, Maksymiuk K (2005) Analyst 130:1655

    CAS  Google Scholar 

  40. Kisiel A, Michalska A, Maksymiuk K (2007) Bioelectrochem 71:75

    CAS  Google Scholar 

  41. Kisiel A, Michalska A, Maksymiuk K, Hall EAH (2008) Electroanalysis 20:318

    CAS  Google Scholar 

  42. Rius-Ruiz FX, Kisiel A, Michalska A, Maksymiuk K, Riu J, Xavier RF (2011) Anal Bioanal Chem 399:3613

    CAS  Google Scholar 

  43. Mattinen U, Bobacka J, Lewenstam A (2009) Electroanalysis 21:1955

    CAS  Google Scholar 

  44. Kisiel A, Donten M, Mieczkowski J, Rius-Ruiz FX, Maksymiuk K, Michalska A (2010) Analyst 135:2420

    CAS  Google Scholar 

  45. O’Neil GD, Buiculescu R, Kounaves SP, Chaniotakis NA (2011) Anal Chem 83:5749

    Google Scholar 

  46. Blaz T, Migdalski J, Lewenstam A (2005) Analyst 130:637

    CAS  Google Scholar 

  47. Mangold K-M, Schäfer S, Jüttner K (2000) Fresenius J Anal Chem 367:340

    CAS  Google Scholar 

  48. Nolan MA, Tan SH, Kounaves SP (1997) Anal Chem 69:1244

    CAS  Google Scholar 

  49. Maminska R, Dybko A, Wróblewski W (2006) Sens Actuators B 115:552

    Google Scholar 

  50. Yu P, Dong S (1996) Anal Chim Acta 330:767

    Google Scholar 

  51. Vonau W, Oelßner W, Sikora RJ, Henze J (2003) Referenzelektrode DE 10305005

    Google Scholar 

  52. Vonau W, Oelßner W, Guth U, Henze J (2010) Sens Actuators B 144:368

    Google Scholar 

  53. Matsumoto T, Oashi A, Ito N (2002) Anal Chim Acta 462:253

    CAS  Google Scholar 

  54. Yalcinkaya F, Powner ET (1997) Med Eng Phys 19:299

    CAS  Google Scholar 

  55. Kitade T, Kitamura M, Takegami S, Miyata Y, Nagatomo M, Sakaguchi T, Furukawa M (2005) Anal Sci 21:907

    CAS  Google Scholar 

  56. Zhang X, Ogorevec B, Tavcar G, Grabec Svegl I (1996) Analyst 121:1817

    CAS  Google Scholar 

  57. Mroz A, Borchardt M, Diekmann C, Cammann K, Knoll M, Dumschat C (1998) Analyst 123:1373

    CAS  Google Scholar 

  58. Suzuki H, Hirakawa I, Sasaki S, Karube I (1998) Sens Actuators B 46:146

    Google Scholar 

  59. Suzuki H, Shiroishi H, Sasaki S, Karube I (1999) Anal Chem 71:5069

    CAS  Google Scholar 

  60. Suzuki H, Hirakawa I, Sasaki S, Karube I (1999) Anal Chim Acta 387:103

    CAS  Google Scholar 

  61. Hetzer HB, Robinson RA, Bates RG (1962) J Phys Chem 66:1423

    CAS  Google Scholar 

  62. Harned HS, Keston AS, Donelson JG (1936) J Am Chem Soc 58:989

    CAS  Google Scholar 

  63. Towns MB, Greeley RS, Lietzke MH (1960) J Phys Chem 64:1861

    CAS  Google Scholar 

  64. Strydom CA, Van Staden JF, Strydom HJ (1991) Electroanalysis 3:815

    CAS  Google Scholar 

  65. Hetzer HB, Robinson RA, Bates RG (1964) J Phys Chem 68:1929

    CAS  Google Scholar 

  66. Owen BB (1935) J Am Chem Soc 57:1226

    Google Scholar 

  67. Hashimoto M, Upadhyay S, Kojima S, Suzuki H, Hayashi K, Sunagawa K (2006) J Electrochem Soc 153:H155

    CAS  Google Scholar 

  68. Strydom CA, Van Staden JF, Strydom HJ (1992) Electroanalysis 4:969

    CAS  Google Scholar 

  69. Golding M (1959) J Chem Soc 1838

    Google Scholar 

  70. Noyes AA, Freed ES (1920) J Am Chem Soc 42:476

    CAS  Google Scholar 

  71. Kimura G (1935) Bull Inst Phys Chem Res (Tokyo) 14:94

    CAS  Google Scholar 

  72. Goates RJ, Cole AG, Gray EL, Faux ND (1951) J Am Chem Soc 73:707

    CAS  Google Scholar 

  73. Ives DJG, Janz GJ (eds) (1961) Reference electrodes. Theory and practice. Academic, New York, Chapter 7.V, pp 381–382

    Google Scholar 

  74. Freiberger WI, de Bruyn PL (1957) J Phys Chem 61:586

    Google Scholar 

  75. Nakolkin IA (1942) Zh Fiz Khim 16:18

    Google Scholar 

References to Sect. 5.3

  1. Hills GJ, Ives DJG (1961) The calomel electrode and other mercury-mercurous salt electrodes. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, pp 127–178

    Google Scholar 

  2. Smith TJ, Stevenson KJ (2007) Reference electrodes. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, pp 73–110

    Google Scholar 

  3. Szabó S, Bakos I (2010) Int J Corros, article ID 756950

    Google Scholar 

  4. Wrona PK, Galus Z (1982) Mercury. In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, part A, vol 9. Dekker, New York

    Google Scholar 

  5. Hills GJ, Ives DJG (1951) J Chem Soc 319

    Google Scholar 

  6. Guggenheim EA, Prue JE (1954) Trans Faraday Soc 50:231

    CAS  Google Scholar 

  7. Schwabe K, Ziegenbalg S (1958) Z Elektrochem 62:172

    CAS  Google Scholar 

  8. Grzybowski AK (1958) J Phys Chem 62:550

    CAS  Google Scholar 

  9. Holze R (2007) Electrochemical thermodynamics and kinetics. In: Lechner MD (ed) Landolt-Börnstein numeric data and functional relationships in science and technology, group IV physical chemistry, vol 9 Electrochemistry. Springer, Berlin, subvolume A

    Google Scholar 

  10. Chateau H (1954) J Chim Phys 51:590

    CAS  Google Scholar 

  11. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  12. Yosypchuk B, Novotny L (2003) Chem Listy 97:1083

    CAS  Google Scholar 

  13. Yosypchuk B, Novotny L (2004) Electroanalysis 16:238

    CAS  Google Scholar 

  14. Pickup NL, Lam M, Milojevic D, Bi RY, Shapiro JS, Wong DKY (1997) Polymer 38:2561

    CAS  Google Scholar 

  15. Bockris JO’M, Devanathan MAU, Reddy AKN (1964) Proc R Soc London A279:324

    Google Scholar 

  16. Hills GJ, Ives DJG (1951) J Chem Soc 313

    Google Scholar 

  17. Cousens RH, Ives DJG, Pittman RW (1953) J Chem Soc 3972

    Google Scholar 

  18. Cousens RH, Ives DJG, Pittman RW (1953) J Chem Soc 3980

    Google Scholar 

  19. Dibbs HP, Ives DJG, Pittman RW (1957) J Chem Soc 3370

    Google Scholar 

  20. Boult EH, Thirsk HR (1954) Trans Faraday Soc 50:376

    Google Scholar 

  21. Cornish DC, Dibbs HP, Feates FS, Ives DJG, Pittman RW (1962) J Chem Soc 4104

    Google Scholar 

  22. Cornish DC, Das SN, Ives DJG, Pittman RW (1966) J Chem Soc A 111

    Google Scholar 

  23. Cornish DC, Ives DJG, Pittman RW (1966) J Chem Soc A 116

    Google Scholar 

  24. Armstrong RD, Fleischmann M, Thirsk HR (1965) Trans Faraday Soc 61:2238

    CAS  Google Scholar 

  25. Behr B, Taraszewska J (1968) J Electroanal Chem 19:373

    CAS  Google Scholar 

  26. Bewick A, Fleischmann M, Thirsk HR (1962) Trans Faraday Soc 58:2200

    CAS  Google Scholar 

  27. Das SN, Ives DJG (1962) J Chem Soc 1619

    Google Scholar 

  28. Ives DJG, Prasad D (1970) J Chem Soc B 1649

    Google Scholar 

  29. Covington AK, Dobson JV, Wynne-Jones L (1967) Electrochim Acta 12:525

    CAS  Google Scholar 

  30. Covington AK, Dobson JV, Wynne-Jones L (1967) Electrochim Acta 12:513

    CAS  Google Scholar 

  31. Schwabe K, Ferse E (1965) Z Elektrochem 69:383

    CAS  Google Scholar 

  32. Vitiello JD, Pistone D, Cormier AD (1996) Scand J Clin Lab Invest 56(Suppl 224):165

    CAS  Google Scholar 

  33. Gerke RH (1925) Chem Rev 1:377

    CAS  Google Scholar 

  34. Gupta SR, Hills DJ, Ives DJG (1963) Trans Faraday Soc 59:1886

    CAS  Google Scholar 

  35. Cornish DC, Ives DJG, Pittman RW (1966) J Chem Soc A 120

    Google Scholar 

  36. Ives DJG, Smith FR (1961) Electrodes reversible to sulfate ions. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, pp 393–410

    Google Scholar 

  37. Antropov LI (1972) Tankonyvkiado. Budapest in Hungarian; (1969) Theoreticheskaya Elektrokhimiya. Visshaya Skola, Moscow

    Google Scholar 

  38. Carpenter MK, Bernardi DM, Wertz JA (1996) J Power Sources 63:15

    CAS  Google Scholar 

  39. Hamer WJ (1972) J Res Natl Bur Stand 76A:185

    Google Scholar 

  40. Beck WH, Dobson JV, Wynne-Jones WFK (1960) Trans Faraday Soc 56:1172

    CAS  Google Scholar 

  41. Harned HS, Hamer WJ (1935) J Am Chem Soc 57:27

    CAS  Google Scholar 

  42. Covington AK, Dobson JV, Wynne-Jones WFK (1965) Trans Faraday Soc 61:2050

    CAS  Google Scholar 

  43. Clegg SL, Rard JA, Pitzer KS (1994) J Chem Soc Faraday Trans 90:1875

    CAS  Google Scholar 

  44. Hamer WJ, Wu YC (1995) J Solution Chem 24:1013

    CAS  Google Scholar 

  45. Gardner WL, Mitchell RE, Cobble JW (1969) J Phys Chem 73:2021

    CAS  Google Scholar 

  46. Ives DJG (1961) Oxide, oxygen and sulfide electrodes. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, pp 322–392

    Google Scholar 

  47. Makolkin IA (1942) Zhur Fiz Khim 16:18

    CAS  Google Scholar 

  48. Goates RJ, Cole AG, Gray EL (1951) J Am Chem Soc 73:3596

    CAS  Google Scholar 

  49. Balej J (1985) Standard potentials in aqueous solution. In: Bard AJ, Parson R, Jordan J (eds) Mercury. Dekker, New York, Chapter 10.III

    Google Scholar 

  50. Sillén LG (1949) Acta Chem Scand 3:539

    Google Scholar 

References to Sect. 5.4

  1. Bates RG (1961) The glass electrode. In: Ives DJG, Janz GJ (eds) Reference electrodes. Theory and practice. Academic, New York, pp 270–321

    Google Scholar 

  2. SzabóS, Bakos I (2010) Int J Corros, article ID 756950

    Google Scholar 

  3. Mussini T, Longhi P (1965) Ric Sci Rend A8:1352

    Google Scholar 

  4. Baucke FGK (1974) Chem Ing Tech 46:71

    CAS  Google Scholar 

  5. Holze R (2007) Electrochemical thermodynamics and kinetics. In: Lechner MD (ed) Landolt-Börnstein numeric data and functional relationships in science and technology, group IV physical chemistry, vol 9 Electrochemistry. Springer, Berlin, subvolume A

    Google Scholar 

  6. Baucke FGK (1971) J Electroanal Chem 33:135

    CAS  Google Scholar 

  7. Baucke FGK (1972) J Electroanal Chem 39:263

    CAS  Google Scholar 

  8. Midgley D, Torrance K (1978) Analyst 101:833

    Google Scholar 

  9. Cogley DR, Butler JN (1966) J Electrochem Soc 113:1074

    CAS  Google Scholar 

  10. Smyrl WH, Tobias CW (1966) J Electrochem Soc 113:754

    CAS  Google Scholar 

  11. Smyrl WH, Tobias CW (1968) J Electrochem Soc 115:33

    CAS  Google Scholar 

  12. Delahay P, Tobias CW (eds) (1970) Advances in electrochemistry and electrochemical engineering, vol 7. Interscience, New York

    Google Scholar 

  13. Baucke FGK, Tobias CW (1969) J Electrochem Soc 116:34

    Google Scholar 

  14. Coetzee JE, Campion JJ (1967) J Am Chem Soc 89:2513

    CAS  Google Scholar 

References to Sect. 5.5

  1. Brunner E (1907) Z Phys Chem 58:1

    CAS  Google Scholar 

  2. Vetter KJ (1952) Z Phys Chem 199:22

    CAS  Google Scholar 

  3. Ross JW, Potentiometric electrode, UK patent GB 2 088 565 A

    Google Scholar 

  4. Palmer DA, Ramette RW, Mesmer RE (1984) J Solution Chem 13:9

    Google Scholar 

  5. Tauber G (2006) Presentation on ELACH7 conference in Waldheim, Germany

    Google Scholar 

  6. Bates RG (1954) Electrometric pH determinations, theory and practice. Wiley, New York

    Google Scholar 

  7. Galster H (1990) pH-Messung. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  8. Hamann CH, Vielstich W (1998) Elektrochemie. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  9. Hirshberg M, West SJ, Barbookles J, Ion-selective electrode, US Patent No. US 6,793,787 B1

    Google Scholar 

  10. Tauber G, Potentiometrische Messkette, Patent Nr. D 10 2006 012 799 B4

    Google Scholar 

  11. Milazzo G (1952) Elektrochemie. Springer, Wien

    Google Scholar 

  12. Baucke FGK, Bertram R, Cruse K (1971) J Electroanal Chem 32:247

    CAS  Google Scholar 

References to Sect. 5.6

  1. Brönsted JN (1909) Z Physik Chem 65:84

    Google Scholar 

  2. Fried F (1926) Z Physik Chem 123:406

    CAS  Google Scholar 

  3. Longhi P, Mussini T, Orsenigo R, Rondinini S (1987) J Appl Electrochem 17:505

    CAS  Google Scholar 

  4. Ives DJG, Janz GJ (eds) (1961) Reference electrodes. Theory and practice. Academic, New York, Chapter 7.II, pp 333–335

    Google Scholar 

  5. Hamer WJ, Craig DN (1957) J Electrochem Soc 104:206

    CAS  Google Scholar 

  6. Balej J (1985) Standard potentials in aqueous solution. In: Bard AJ, Parsons R, Jordan J (eds) Mercury. Dekker, New York, Chapter 10.III

    Google Scholar 

  7. Hepler LG, Olofson G (1975) Chem Rev 75:585

    CAS  Google Scholar 

  8. Samuelson GJ, Brown DJ (1935) J Am Chem Soc 57:2711

    CAS  Google Scholar 

  9. Rondinini S, Longhi P, Mussini PR, Mussini T (1994) Pure Appl Chem 66:641 @ 1994 IUPAC

    Google Scholar 

  10. Every RL, Banks WP (1967) Corrosion 23:151

    CAS  Google Scholar 

  11. Case B, Bignold GJ (1971) J Appl Electrochem 1:141

    CAS  Google Scholar 

  12. Nickell RA, Zhu WH, Payne RU, Cahela DR, Tatarchule BJ (2006) J Power Sources 161:1217

    CAS  Google Scholar 

  13. Kim W, Park J (2007) Bull Korean Chem Soc 28:439

    CAS  Google Scholar 

  14. El Wakkad SES, Salem TM (1952) J Phys Chem 56:621

    CAS  Google Scholar 

  15. Smith TJ, Stevenson KJ (2007) Reference electrodes. In: Zoski CG (ed) Handbook of electrochemistry, Elsevier, pp 73–110

    Google Scholar 

  16. Zhutaeva GV, Shumilova NA (1985) In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Dekker, New York, Chapter 11.II

    Google Scholar 

  17. Pourbaix M (ed) (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  18. Gabel J, Vonau W, Shuk P, Guth U (2004) Solid State Ionics 169:75

    CAS  Google Scholar 

  19. Lukowski R, Guth U, Schäf O (1999) DE—Pat 19.823.056:A1

    Google Scholar 

  20. Maier J, Warhus U (1986) J Chem Thermodyn 18:309

    CAS  Google Scholar 

  21. Maier J, Holzinger M, Sitte W (1994) Solid State Ionics 74:5

    CAS  Google Scholar 

  22. Salem F, Birke P, Weppner W (1999) Electrochem Solid State Lett 2:201

    Google Scholar 

  23. Zhang YC, Tagawa H, Asakura S, Mizusaki J, Narita H (1997) J Electrochem Soc 144:4345

    CAS  Google Scholar 

  24. Ramirez J, Fabry P (2001) Sens Actuators B 77:339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petra Spitzer , Petra Spitzer , Zbigniew Galus , Krzysztof Maksymiuk , Krzysztof Maksymiuk , Günter Tauber or Zbigniew Galus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spitzer, P. et al. (2013). Reference Electrodes for Aqueous Solutions. In: Inzelt, G., Lewenstam, A., Scholz, F. (eds) Handbook of Reference Electrodes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36188-3_5

Download citation

Publish with us

Policies and ethics