Skip to main content

Abstract

In this paper, the realisation and testing of spatial coupling methods for aeroelastic simulations with partitioned algorithms is presented. The investigated methods for spatial coupling—the transfer of loads and deformations between the wetted surface and the structural model—are the method of Finite Interpolation Elements and two other, newly-implemented interpolation methods. All three are suitable for reduced structural models, and the geometries of the wetted surface and the structural model do not have to coincide. The aeroelastic simulation tool employed and the theoretical background of the spatial coupling schemes are outlined. Different measures for the quality of the spatial coupling are derived and applied to test cases of increasing complexity. The influence of user-defined coupling parameters on the deformation projection is assessed. Based on these results and on practical considerations, the available coupling methods are compared and conclusions are drawn regarding their applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrem, R., Beckert, A., Wendland, H.: A New Multivariate Interpolation Method for Large-Scale Spatial Coupling Problems in Aeroelasticity. In: Int. Forum Aeroel. Struct. Dyn. (IFASD) 2005, paper IF-073, Munich, Germany (2005)

    Google Scholar 

  2. Badcock, K.J., Rampurawala, A.M., Richards, B.E.: Intergrid Transformation for Aircraft Aeroelastic Simulation. In: 21st Appl. Aerodyn. Conf., AIAA paper 2003-3512, Orlando, USA (2003)

    Google Scholar 

  3. Ballmann, J. (ed.): Flow Modulation and Fluid-Structure Interaction at Airplane Wings—Research Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany. Springer (2003)

    Google Scholar 

  4. Ballmann, J., Boucke, A., Dickopp, C., Reimer, L.: Results of Dynamic Experiments in the HIRENASD Project and Analysis of Observed Unsteady Processes. In: Int. Forum Aeroel. Struct. Dyn. (IFASD) 2009, paper IFASD-2009-103, Seattle, USA (2009)

    Google Scholar 

  5. Beckert, A.: Coupling Fluid (CFD) and structural (FE) Models using Finite Interpolation Elements. Aerosp. Sci. Technol. 4, 13–22 (2000)

    Article  MATH  Google Scholar 

  6. Beckert, A., Wendland, H.: Multivariate Interpolation for Fluid-Structure Interaction Problems using Radial Basis Functions. Aerosp. Sci. Technol. 5, 125–134 (2001)

    Article  MATH  Google Scholar 

  7. Bendiksen, O.O.: Effect of Wing Deformations and Sweep on Transonic Limit Cycle Flutter of Flexible Wings. In: Int. Forum Aeroel. Struct. Dyn. (IFASD) 2007, paper IF-031, Stockholm, Sweden (2007)

    Google Scholar 

  8. Boucke, A.: Kopplungswerkzeuge für aeroelastische Simulationen. Doctoral thesis, RWTH Aachen University (2003)

    Google Scholar 

  9. Braun, C.: Ein modulares Verfahren für die numerische aeroelastische Analyse von Luftfahrzeugen. Doctoral thesis, RWTH Aachen University (2007)

    Google Scholar 

  10. Cebral, J.R., Löhner, R.: Conservative Load Projection and Tracking for Fluid-Structure Problems. AIAA J. 35(4) (1997)

    Google Scholar 

  11. Chen, P.C., Jadic, I.: Interfacing of Fluid and Structural Models via Innovative Structural Boundary Element Method. AIAA J. 36(2), 282–287 (1998)

    Article  MATH  Google Scholar 

  12. Farhat, C., Lesoinne, M., LeTallec, P.: Load and Motion Transfer Algorithms for Fluid/ Structure Interaction Problems with Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity. Comput. Methods Appl. Mech. Eng. 157, 95–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goura, G.S., Badcock, K.J., Woodgate, M.A., Richards, B.E.: Transformation Methods for the Time Marching Analysis of Flutter. In: 19th AIAA Appl. Aerodyn. Conf., AIAA paper 2001-2457, Anaheim, USA (2001)

    Google Scholar 

  14. Harder, R.L., Desmarais, R.N.: Interpolation Using Surface Splines. J. Aircr. 9, 189–191 (1972)

    Article  Google Scholar 

  15. Heinrich, R., Kroll, N., Neumann, J., Nagel, B.: Fluid-Structure Coupling for Aerodynamic Analysis and Design — A DLR Perspective. In: 46th AIAA Aerosp. Sci. Meet. Exhib., paper AIAA 2008-561, Reno, USA (2008)

    Google Scholar 

  16. Hesse, M.: Entwicklung eines automatischen Gitterdeformationsalgorithmus zur Strömungsberechnung um komplexe Konfigurationen auf Hexaedernetzen. Doctoral thesis, RWTH Aachen University (2006)

    Google Scholar 

  17. Jaiman, R.K., Jiao, X., Geubelle, P.H., Loth, E.: Assessment of Conservative Load Transfer for Fluid-Solid Interface with Non-Matching Meshes. Int. J. Numer. Methods Eng. 55 (2004)

    Google Scholar 

  18. Kroll, N., Rossow, C.-C., Becker, K., Thiele, F.: The MEGAFLOW Project. Aerosp. Sci. Technol. 4(4), 223–237 (2000)

    Article  MATH  Google Scholar 

  19. Kroll, N., Fassbender, J.K. (eds.): MEGAFLOW—Numerical Flow Simulation in Aircraft Design. Springer (2005)

    Google Scholar 

  20. Kroll, N. (ed.): MEGADESIGN and MegaOpt—German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design. Springer (2009)

    Google Scholar 

  21. Massjung, R.: Numerical Schemes and Well-Posedness in Nonlinear Aeroelasticity. Doctoral thesis, RWTH Aachen University (2002)

    Google Scholar 

  22. Park, K.C., Felippa, C.A., Ohayon, R.: Partitioned Formulation of Internal Fluid-Structure Interaction Problems via Localized Lagrange Multipliers. Comput. Methods Appl. Mech. Eng. 190, 2989–3007 (2001)

    Article  MATH  Google Scholar 

  23. Quaranta, G., Masarati, P., Mantegazza, P.: A Conservative Mesh-Free Approach for Fluid-Structure Interface Problems. In: Int. Conf. Comp. Methods Coupled Probl. Sci. Eng., Barcelona, Spain (2005)

    Google Scholar 

  24. Reimer, L., Boucke, A., Ballmann, J., Behr, M.: Computational Analysis of High Reynolds Number Aero-Structural Dynamics (HIRENASD) Experiments. In: Int. Forum Aeroel. Struct. Dyn. (IFASD) 2009, paper IFASD-2009-130, Seattle, USA (2009)

    Google Scholar 

  25. Reimer, L., Braun, C., Wellmer, G., Behr, M., Ballmann, J.: Development of a Modular Method for Computational Aero-Structural Analysis of Aircraft. In: Schro ̈der, W. (ed.) Summary of Flow Modulation and Fluid-Structure Interaction Findings—Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany. Springer (1997-2008) (to be published)

    Google Scholar 

  26. van Rossum, G., Drake, F.L.: Using Python Release 3.1.1. Python Software Foundation (2009), http://www.python.org

  27. Sadeghi, M., Liu, F., Lai, K.L., Tsai, H.M.: Application of Three-Dimensional Interfaces for Data Transfer in Aeroelastic Computations. In: 22nd Appl. Aerodyn. Conf. Exhib., AIAA paper 2004-5376, Providence, USA (2004)

    Google Scholar 

  28. Schröder, W. (Ed.): Summary of Flow Modulation and Fluid-Structure Interaction Findings — Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany. Springer (1997-2008) (to be published)

    Google Scholar 

  29. Unger, R., Haupt, M.C., Horst, P.: Coupling Techniques for Computational Nonlinear Transient Aeroelasticity. In: 25th Int. Congr. Aeronaut. Sc. (ICAS), paper ICAS 2006-10.2.3, Hamburg, Germany (2006)

    Google Scholar 

  30. Wendland, H.: Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Wellmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wellmer, G., Reimer, L., Flister, H., Behr, M., Ballmann, J. (2013). A Comparison of Fluid/Structure Coupling Methods for Reduced Structural Models. In: Eisfeld, B., Barnewitz, H., Fritz, W., Thiele, F. (eds) Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36185-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36185-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36184-5

  • Online ISBN: 978-3-642-36185-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics