Skip to main content

Numerical Methods for Uncertainty Quantification and Bayesian Update in Aerodynamics

  • Chapter

Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM,volume 122)

Abstract

In this work we research the propagation of uncertainties in parameters and airfoil geometry to the solution. Typical examples of uncertain parameters are the angle of attack and the Mach number. The discretisation techniques which we used here are the Karhunen-Loève and the polynomial chaos expansions. To integrate high-dimensional integrals in probabilistic space we used Monte Carlo simulations and collocation methods on sparse grids. To reduce storage requirement and computing time, we demonstrate an algorithm for data compression, based on a low-rank approximation of realisations of random fields. This low-rank approximation allows us an efficient postprocessing (e.g. computation of the mean value, variance, etc) with a linear complexity and with drastically reduced memory requirements. Finally, we demonstrate how to compute the Bayesian update for updating a priori probability density function of uncertain parameters. The Bayesian update is also used for incorporation of measurements into the model.

Keywords

  • Response Surface
  • Mach Number
  • Linear Complexity
  • Sparse Grid
  • Polynomial Chaos

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36185-2_11
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36185-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    MathSciNet  CrossRef  Google Scholar 

  3. Chen, Q.-Y., Gottlieb, D., Hesthaven, J.S.: Uncertainty analysis for the steady-state flows in a dual throat nozzle. Journal of Computational Physics 204(1), 378–398 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-tau-Code. AIAA-0167 (1997)

    Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  6. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Foundations of Computational Mathematics, Santander 2005. London Math. Soc. Lecture Note Ser., vol. 331, pp. 106–161. Cambridge Univ. Press, Cambridge (2006)

    CrossRef  Google Scholar 

  7. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White noise - An infinite-dimensional calculus. Mathematics and its Applications, vol. 253. Kluwer Academic Publishers Group, Dordrecht (1993)

    MATH  Google Scholar 

  8. Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (AIAA 2006-891), pp. 209–236 (January 2006)

    Google Scholar 

  9. Khoromskij, B.N., Litvinenko, A.: Data sparse computation of the Karhunen-Loève expansion. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, AIP Conf. Proc., vol. 1048(1), pp. 311–314 (2008)

    Google Scholar 

  10. Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Application of hierarchical matrices for computing the Karhunen-Loève expansion. Computing 84(1-2), 49–67 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45, 255–282 (1950)

    MathSciNet  CrossRef  Google Scholar 

  12. Litvinenko, A., Matthies, H.G.: Sparse data representation of random fields. In: Proceedings in Applied Mathematics and Mechanics, PAMM, vol. 9, pp. 587–588. Wiley-InterScience (2009)

    Google Scholar 

  13. Litvinenko, A., Matthies, H.G.: Low-rank data format for uncertainty quantification. In: Skiadas, C.H. (ed.) International Conference on Stochastic Modeling Techniques and Data Analysis Proceedings, Chania, Greece, pp. 477–484 (2010), http://www.smtda.net/smtda2010proceedings.html

  14. Litvinenko, A., Matthies, H.G.: Sparse data formats and efficient numerical methods for uncertainties quantification in numerical aerodynamics. In: IV European Congress on Computational Mechanics (ECCM IV): Solids, Structures and Coupled Problems in Engineering (2010), http://www.eccm2010.org/complet/fullpaper_1036.pdf

  15. Litvinenko, A., Matthies, H.G.: Uncertainties quantification and data compression in numerical aerodynamics. Proc. Appl. Math. Mech. 11(1), 877–878 (2011)

    CrossRef  Google Scholar 

  16. Loève, M.: Probability theory I. Graduate Texts in Mathematics, 4th edn., vol. 45, 46. Springer, New York (1977)

    CrossRef  Google Scholar 

  17. Mathelin, L., Hussaini, M.Y., Zang, T.A.: Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38(1-3), 209–236 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Matthies, H.G.: Uncertainty quantification with stochastic finite elements. Part 1. Fundamentals. In: Encyclopedia of Computational Mechanics. John Wiley and Sons, Ltd. (2007)

    Google Scholar 

  19. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. In: Annual Review of Fluid Mechanics. Annu. Rev. Fluid Mech., vol. 41, pp. 35–52. Annual Reviews, Palo Alto (2009)

    Google Scholar 

  20. Pajonk, O., Rosić, B.V., Litvinenko, A., Matthies, H.G.: A deterministic filter for non-gaussian bayesian estimation-applications to dynamical system estimation with noisy measurements. Physica D: Nonlinear Phenomena 241(7), 775–788 (2012)

    MATH  CrossRef  Google Scholar 

  21. Rosic, B.V., Litvinenko, A., Pajonk, O., Matthies, H.G.: Sampling-free linear bayesian update of polynomial chaos representations. J. Comput. Physics 231(17), 5761–5787 (2012)

    MathSciNet  CrossRef  Google Scholar 

  22. Saad, Y.: Numerical methods for large eigenvalue problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)

    Google Scholar 

  23. Simon, F., Guillen, P., Sagaut, P., Lucor, D.: A gpc-based approach to uncertain transonic aerodynamics. Computer Methods in Applied Mechanics and Engineering 199(17-20), 1091–1099 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  24. Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering 195(41-43), 5582–5596 (2006); John H. Argyris Memorial Issue. Part II

    MathSciNet  MATH  CrossRef  Google Scholar 

  25. Wiener, N.: The homogeneous chaos. American Journal of Mathematics 60, 897–936 (1938)

    MathSciNet  CrossRef  Google Scholar 

  26. Witteveen, J.A.S., Loeven, A., Bijl, H.: An adaptive stochastic finite elements approach based on newton-cotes quadrature in simplex elements. Computers & Fluids 38(6), 1270–1288 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. Witteveen, J.A.S., Doostan, A., Pecnik, R., Iaccarino, G.: Uncertainty quantification of the transonic flow around the rae2822 airfoil. Annual Research Briefs, Center for Turbulence Research, pp. 93–104. Stanford University (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Litvinenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Litvinenko, A., Matthies, H.G. (2013). Numerical Methods for Uncertainty Quantification and Bayesian Update in Aerodynamics. In: Eisfeld, B., Barnewitz, H., Fritz, W., Thiele, F. (eds) Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36185-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36185-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36184-5

  • Online ISBN: 978-3-642-36185-2

  • eBook Packages: EngineeringEngineering (R0)