Abstract
In this work we research the propagation of uncertainties in parameters and airfoil geometry to the solution. Typical examples of uncertain parameters are the angle of attack and the Mach number. The discretisation techniques which we used here are the Karhunen-Loève and the polynomial chaos expansions. To integrate high-dimensional integrals in probabilistic space we used Monte Carlo simulations and collocation methods on sparse grids. To reduce storage requirement and computing time, we demonstrate an algorithm for data compression, based on a low-rank approximation of realisations of random fields. This low-rank approximation allows us an efficient postprocessing (e.g. computation of the mean value, variance, etc) with a linear complexity and with drastically reduced memory requirements. Finally, we demonstrate how to compute the Bayesian update for updating a priori probability density function of uncertain parameters. The Bayesian update is also used for incorporation of measurements into the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006)
Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
Chen, Q.-Y., Gottlieb, D., Hesthaven, J.S.: Uncertainty analysis for the steady-state flows in a dual throat nozzle. Journal of Computational Physics 204(1), 378–398 (2005)
Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-tau-Code. AIAA-0167 (1997)
Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)
Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Foundations of Computational Mathematics, Santander 2005. London Math. Soc. Lecture Note Ser., vol. 331, pp. 106–161. Cambridge Univ. Press, Cambridge (2006)
Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White noise - An infinite-dimensional calculus. Mathematics and its Applications, vol. 253. Kluwer Academic Publishers Group, Dordrecht (1993)
Hosder, S., Walters, R., Perez, R.: A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, (AIAA 2006-891), pp. 209–236 (January 2006)
Khoromskij, B.N., Litvinenko, A.: Data sparse computation of the Karhunen-Loève expansion. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics, AIP Conf. Proc., vol. 1048(1), pp. 311–314 (2008)
Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Application of hierarchical matrices for computing the Karhunen-Loève expansion. Computing 84(1-2), 49–67 (2009)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45, 255–282 (1950)
Litvinenko, A., Matthies, H.G.: Sparse data representation of random fields. In: Proceedings in Applied Mathematics and Mechanics, PAMM, vol. 9, pp. 587–588. Wiley-InterScience (2009)
Litvinenko, A., Matthies, H.G.: Low-rank data format for uncertainty quantification. In: Skiadas, C.H. (ed.) International Conference on Stochastic Modeling Techniques and Data Analysis Proceedings, Chania, Greece, pp. 477–484 (2010), http://www.smtda.net/smtda2010proceedings.html
Litvinenko, A., Matthies, H.G.: Sparse data formats and efficient numerical methods for uncertainties quantification in numerical aerodynamics. In: IV European Congress on Computational Mechanics (ECCM IV): Solids, Structures and Coupled Problems in Engineering (2010), http://www.eccm2010.org/complet/fullpaper_1036.pdf
Litvinenko, A., Matthies, H.G.: Uncertainties quantification and data compression in numerical aerodynamics. Proc. Appl. Math. Mech. 11(1), 877–878 (2011)
Loève, M.: Probability theory I. Graduate Texts in Mathematics, 4th edn., vol. 45, 46. Springer, New York (1977)
Mathelin, L., Hussaini, M.Y., Zang, T.A.: Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 38(1-3), 209–236 (2005)
Matthies, H.G.: Uncertainty quantification with stochastic finite elements. Part 1. Fundamentals. In: Encyclopedia of Computational Mechanics. John Wiley and Sons, Ltd. (2007)
Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. In: Annual Review of Fluid Mechanics. Annu. Rev. Fluid Mech., vol. 41, pp. 35–52. Annual Reviews, Palo Alto (2009)
Pajonk, O., Rosić, B.V., Litvinenko, A., Matthies, H.G.: A deterministic filter for non-gaussian bayesian estimation-applications to dynamical system estimation with noisy measurements. Physica D: Nonlinear Phenomena 241(7), 775–788 (2012)
Rosic, B.V., Litvinenko, A., Pajonk, O., Matthies, H.G.: Sampling-free linear bayesian update of polynomial chaos representations. J. Comput. Physics 231(17), 5761–5787 (2012)
Saad, Y.: Numerical methods for large eigenvalue problems. Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)
Simon, F., Guillen, P., Sagaut, P., Lucor, D.: A gpc-based approach to uncertain transonic aerodynamics. Computer Methods in Applied Mechanics and Engineering 199(17-20), 1091–1099 (2010)
Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering 195(41-43), 5582–5596 (2006); John H. Argyris Memorial Issue. Part II
Wiener, N.: The homogeneous chaos. American Journal of Mathematics 60, 897–936 (1938)
Witteveen, J.A.S., Loeven, A., Bijl, H.: An adaptive stochastic finite elements approach based on newton-cotes quadrature in simplex elements. Computers & Fluids 38(6), 1270–1288 (2009)
Witteveen, J.A.S., Doostan, A., Pecnik, R., Iaccarino, G.: Uncertainty quantification of the transonic flow around the rae2822 airfoil. Annual Research Briefs, Center for Turbulence Research, pp. 93–104. Stanford University (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Litvinenko, A., Matthies, H.G. (2013). Numerical Methods for Uncertainty Quantification and Bayesian Update in Aerodynamics. In: Eisfeld, B., Barnewitz, H., Fritz, W., Thiele, F. (eds) Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36185-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-36185-2_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36184-5
Online ISBN: 978-3-642-36185-2
eBook Packages: EngineeringEngineering (R0)