Skip to main content

Arthropod Endosymbiosis and Evolution

  • Chapter
  • First Online:
Book cover Arthropod Biology and Evolution

Abstract

The association of “two species that live on or in one another” was first described in the nineteenth century, and the word symbiosis was proposed to denote this biological phenomenon (Sapp 1994). The discovery that lichens are organisms generated by the integration of a fungus and blue-green algae, that is, cyanobacteria, was followed by a number of other studies that have shown how the association of different species is widespread in nature and characterized by different degrees of benefit-sharing. Symbiosis encompasses both antagonistic relationships, in which one organism takes advantage of the other, and mutualistic relationships, where both partners gain advantage from their association. There are also cases where no clear benefit or harm is evident for both interacting species, which are then, in some cases, considered commensals. The term symbiosis applies to all these type of species associations, and not only to mutualism, as is sometimes erroneously done (Sapp 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi-Hagimori T, Miura K, Abe Y (2011) Gene flow between sexual and asexual strains of parasitic wasps: a possible case of sympatric speciation caused by a parthenogenesis-inducing bacterium. J Evol Biol 24:1254–1262

    Article  PubMed  Google Scholar 

  • Adachi-Hagimori T, Miura K, Stouthamer R (2008) A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proc R Soc B 275:2667–2673

    Article  PubMed  CAS  Google Scholar 

  • Allen JM, Light JE, Perotti MA, Braig HR, Reed DL (2009) Mutational meltdown in primary endosymbionts: selection limits Muller’s ratchet. PLoS ONE 4(3):e4969. doi:10.1371/journal.pone.0004969

  • Anbutsu H, Fukatsu T (2011) Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep 3:144–153

    Article  CAS  Google Scholar 

  • Arakaki N, Noda H, Yamagishi K (2000) Wolbachia-induced parthenogenesis in the egg parasitoid Telenomus nawai. Entom Exper Appl 96:177–184

    Article  Google Scholar 

  • Batut J, Andersson SG, O’Callaghan D (2004) The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2:933–945

    Article  PubMed  CAS  Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  PubMed  CAS  Google Scholar 

  • Bentley JK, Veneti Z, Heraty J, Hurst GD (2007) The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biol 5:9. doi:10.1186/1741-7007-5-9

  • Bézier A, Annaheim M, Herbiniere J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff A-N, Lanzrein B, Drezen J-M (2009) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323:926–930

    Article  PubMed  CAS  Google Scholar 

  • Bideshi DK, Bigot Y, Federici BA, Spears T (2010) Ascoviruses. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic, Norfolk, pp 3–34

    Google Scholar 

  • Bigot Y, Rabouille A, Doury G, Sizaret P-Y, Delbost F, Hamelin M-H, Periquet G (1997) Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host, Acrolepiopsis assectella. J Gen Virol 78:1149–1163

    PubMed  CAS  Google Scholar 

  • Bonning BC (2005) Baculoviruses: biology, biochemistry, and molecular biology. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 6. Elsevier, Amsterdam, pp 233–270

    Chapter  Google Scholar 

  • Bordenstein SR (2003) Symbiosis and the origin of species. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 1. CRC Press, Boca Raton, pp 283–304

    Chapter  Google Scholar 

  • Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS One 6(12):e29106. doi:10.1371/journal.pone.0029106

  • Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710

    Article  PubMed  CAS  Google Scholar 

  • Bossan B, Koehncke A, Hammerstein P (2011) A new model and method for understanding Wolbachia-induced cytoplasmic incompatibility. PLoS ONE 6(5):e19757. doi:10.1371/journal.pone.0019757

  • Bouchon D, Cordaux R, Grève P (2009) Feminizing Wolbachia and the evolution of sex determination in isopods. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 3., CRCBoca Raton, FL, pp 273–294

    Google Scholar 

  • Bourtzis K, Braig HR, Karr TL (2003) Cytoplasmic incompatibility. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 1. CRC, Boca Raton, pp 217–246

    Chapter  Google Scholar 

  • Braquart-Varnier C, Lachat M, Herbiniere J, Johnson M, Caubet Y, Bouchon D, Sicard M (2008) Wolbachia mediate variation of host immunocompetence. PLoS One 3 (9):e3286. doi:10.1371/journal.pone.0003286

  • Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution 49:705–717

    Article  Google Scholar 

  • Brennan LJ, Keddie BA, Braig HR, Harris HL (2008) The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE 3(5):e2083. doi:10.1371/journal.pone.0002083

    Article  PubMed  CAS  Google Scholar 

  • Bressan A, Arneodo J, Simonato M, Haines WP, Boudon-Padieu E (2009) Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 11:3265–3279

    Article  PubMed  CAS  Google Scholar 

  • Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354

    Article  PubMed  CAS  Google Scholar 

  • Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66

    Article  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  • Burke GR, Strand MR (2012) Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor bracovirus. J Virol 86:3293–3306

    Article  PubMed  CAS  Google Scholar 

  • Carolan JC, Caragea D, Reardon KT, Mutti NS, Dittmer N, Pappan K, Cui F, Castanet M, Poulain J, Dossat C, Tagu D, Reese JC, Reeck GR, Wilkinson TL, Edwards OR (2011) Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. J Proteome Res 10:1505–1518

    Article  PubMed  CAS  Google Scholar 

  • Carrapiço F (2010) How symbiogenic is evolution? Theory Biosci 129:135–139

    Article  PubMed  Google Scholar 

  • Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc B 279:1791–1796

    Article  PubMed  CAS  Google Scholar 

  • Caubet Y, Hatcher MJ, Mocquard JP, Rigaud T (2000) Genetic conflict and changes in heterogametic mechanisms of sex determination. J Evol Biol 13:766–777

    Article  Google Scholar 

  • Champion de Crespigny FE, Hurst LD, Wedell N (2008) Do Wolbachia-associated incompatibilities promote polyandry? Evolution 62:107–122

    Article  PubMed  Google Scholar 

  • Champion de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc B 273:1455–1458

    Article  PubMed  Google Scholar 

  • Champion de Crespigny FE, Wedell N (2007) Mate preferences in Drosophila infected with Wolbachia? Behav Ecol Sociobiol 61:1229–1235

    Article  Google Scholar 

  • Chapman RF (1998) The insects: structure and function, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Charlat S, Hornett EA, Fullard JH, Davies N, Roderick GK, Wedell N, Hurst GD (2007a) Extraordinary flux in sex ratio. Science 317:214

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Hurst GDD, Merçot H (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223

    Article  PubMed  CAS  Google Scholar 

  • Charlat S, Reuter M, Dyson EA, Hornett EA, Duplouy A, Davies N, Roderick GK, Wedell N, Hurst GD (2007b) Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol 17:273–277

    Article  PubMed  CAS  Google Scholar 

  • Charles H, Condemine G, Nardon C, Nardon P (1997) Genome size characterization of the principal endocellular symbiotic bacteria of the weevil Sitophilus oryzae, using pulsed field gel electrophoresis. Insect Biochem Mol Biol 27:345–350

    Article  CAS  Google Scholar 

  • Chevalier F, Herbiniere-Gaboreau J, Charif D, Mitta G, Gavory F, Wincker P, Greve P, Braquart-Varnier C, Bouchon D (2012) Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare. BMC Microbiol 12(1):S1. doi:1471-2180-12-S1-S1 [pii] 10.1186/1471-2180-12-S1-S1

  • Clark EL, Karley AJ, Hubbard SF (2010) Insect endosymbionts: manipulators of insect herbivore trophic interactions? Protoplasma 244:25–51

    Article  PubMed  Google Scholar 

  • Clark ME, Bailey-Jourdain C, Ferree PM, England SJ, Sullivan W, Windsor DM, Werren JH (2008) Wolbachia modification of sperm does not always require residence within developing sperm. Heredity 101:420–428

    Article  PubMed  CAS  Google Scholar 

  • Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN et al (2006) Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv Virol Res 67:419–452

    Article  CAS  Google Scholar 

  • Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, Lemperiere G, Heddi A (2008) Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol 25:859–868

    Article  PubMed  CAS  Google Scholar 

  • Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, Colbourne JK (2010) Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol 19:75–89

    Article  PubMed  CAS  Google Scholar 

  • Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD (2005) Social parasitism in fire ants (Solenopsis spp.): a potential mechanism for interspecies transfer of Wolbachia. Mol Ecol 14:1543–1548

    Article  PubMed  CAS  Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, Richards S, Moran NA (2010) Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol 12:2060–2069

    PubMed  CAS  Google Scholar 

  • Degnan PH, Moran NA (2008) Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol 17:916–929

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106:9063–9068

    Article  PubMed  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    Article  PubMed  CAS  Google Scholar 

  • Dion E, Zele F, Simon JC, Outreman Y (2011) Rapid evolution of parasitoids when faced with the symbiont-mediated resistance of their hosts. J Evol Biol 24:741–750

    Article  PubMed  CAS  Google Scholar 

  • Dixon AFG (1998) Aphid ecology. Chapman and Hall, London

    Google Scholar 

  • Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissue. Insect Biochem Mol Biol 29:153–160

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64:409–434

    Article  PubMed  CAS  Google Scholar 

  • Drezen JM, Herniou EA, Bézier A (2012) Evolutionary progenitors of bracoviruses. In: Beckage NE, Drezen JM (eds) Parasitoid viruses. Elsevier, Amsterdam, pp 15–31

    Chapter  Google Scholar 

  • Dunn AM, Andrews T, Ingrey H, Riley J, Wedell N (2006) Strategic sperm allocation under parasitic sex-ratio distortion. Biol Lett 2:78–80

    Article  PubMed  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  PubMed  CAS  Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst GD (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. doi:10.1186/1741-7007-6-27

  • Duron O, Wilkes TE, Hurst GD (2010) Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13:1139–1148

    Article  PubMed  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

    Article  PubMed  CAS  Google Scholar 

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Falabella P, Perugino G, Caccialupi P, Riviello L, Varricchio P, Tranfaglia A, Rossi M, Malva C, Graziani F, Moracci M, Pennacchio F (2005) A novel fatty acid binding protein produced by teratocytes of the aphid parasitoid Aphidius ervi. Insect Mol Biol 14:195–205

    Article  PubMed  CAS  Google Scholar 

  • Falabella P, Riviello L, De Stradis ML, Stigliano C, Varricchio P, Grimaldi A, de Eguileor M, Graziani F, Gigliotti S, Pennacchio F (2009) Aphidius ervi teratocytes release an extracellular enolase. Insect Biochem Mol Biol 39:801–813

    Article  PubMed  CAS  Google Scholar 

  • Federici BA (1991) Viewing polydnaviruses as gene vectors of endoparasitic Hymenoptera. Redia 74:387–392

    Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 14:158–168

    Article  CAS  Google Scholar 

  • Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–329

    Article  PubMed  Google Scholar 

  • Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–390

    Article  PubMed  Google Scholar 

  • Ferree PM, Avery A, Azpurua J, Wilkes T, Werren JH (2008) A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Curr Biol 18:1409–1414

    Article  PubMed  CAS  Google Scholar 

  • Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Hosokawa T, Koga R, Nikoh N, Kato T, Hayama S, Takefushi H, Tanaka I (2009) Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Appl Environ Microbiol 75:3796–3799

    Article  PubMed  CAS  Google Scholar 

  • Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proc R Soc B 273:791–796

    Article  PubMed  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Gempe T, Beye M (2011) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays 33:52–60

    Article  PubMed  CAS  Google Scholar 

  • Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234

    Article  PubMed  Google Scholar 

  • Giorgini M, Bernardo U, Monti MM, Nappo AG, Gebiola M (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 76:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS (2009) Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity 102:365–371

    Article  PubMed  CAS  Google Scholar 

  • Giron D, Kaiser W, Imbault N, Casas J (2007) Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Lett 3:340–343

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb Y, Zchori-Fein E (2001) Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entom Exper Appl 100:271–278

    Article  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Werren JH, Karr TL (2002) Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J Invert Pathol 81:166–174

    Article  Google Scholar 

  • Gross R, Vavre F, Heddi A, Hurst GDD, Zchori-Fein E, Bourtzis K (2009) Immunity and symbiosis. Mol Microbiol 73:751–759

    Article  PubMed  CAS  Google Scholar 

  • Gruwell ME, Hardy NB, Gullan PJ, Dittmar K (2010) Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol 76:7521–7525

    Article  PubMed  CAS  Google Scholar 

  • Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc B 276:987–991

    Article  CAS  Google Scholar 

  • Hansen AK, Moran NA (2011) Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA 108:2849–2854

    Article  PubMed  CAS  Google Scholar 

  • Harmon JP, Moran NA, Ives AR (2009) Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–1350

    Article  PubMed  CAS  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  PubMed  CAS  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774

    Article  PubMed  CAS  Google Scholar 

  • Huguet E, Serbielle C, Moreau SJM (2012) Evolution and origin of polydnavirus virulence genes. In: Beckage NE, Drezen JM (eds) Parasitoid viruses. Elsevier, Amsterdam, pp 63–78

    Chapter  Google Scholar 

  • Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004a) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc B 271:509–515

    Article  PubMed  CAS  Google Scholar 

  • Huigens ME, Hohmann CL, Luck RF, Gort G, Stouthamer R (2004b) Reduced competitive ability due to Wolbachia infection in the parasitoid wasp Trichogramma kaykai. Entom Exper Appl 110:115–123

    Article  Google Scholar 

  • Huigens ME, Stouthamer R (2003) Parthenogenesis associated with Wolbachia. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 2., CRCBoca Raton, FL, pp 247–266

    Google Scholar 

  • Hunter MS, Zchori-Fein E (2006) Inherited bacteroidetes symbionts in arthropods. In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 2., CRCBoca Raton, FL, pp 39–56

    Chapter  Google Scholar 

  • Hurst GDD, Jiggins FM, Majerus MEN (2003) Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution? In: Bourtzis K, Miller TA (eds) Insect symbiosis, vol 2., CRCBoca Raton, FL, pp 177–198

    Chapter  Google Scholar 

  • Ijichi N, Kondo N, Matsumoto R, Shimada M, Ishikawa H, Fukatsu T (2002) Internal spatio-temporal population dynamics of infection with three Wolbachia strains in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Appl Environ Microbiol 68:4074–4080

    Google Scholar 

  • Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118:353–362

    Article  Google Scholar 

  • Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4(10):e325. doi: 10.1371/journal.pbio.0040325

  • Jaenike J, Dyer KA, Reed LK (2003) Within-population structure of competition and the dynamics of male-killing Wolbachia. Evol Ecol Res 5:1023–1036

    Google Scholar 

  • Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    Article  PubMed  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  PubMed  CAS  Google Scholar 

  • Jehle JA (2010) Nudiviruses: their biology and genetics. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic, Norfolk, pp 153–170

    Google Scholar 

  • Jiggins FM, Hurst GDD, Majerus MEN (2000) Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc R Soc B 267:69–73

    Article  PubMed  CAS  Google Scholar 

  • Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan F-H, LiuS-S (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2(1):e182. doi:10.1371/journal.pone.0000182

  • Johnstone RA, Hurst GDD (1996) Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol J Linn Soc 58:453–470

    Article  Google Scholar 

  • Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B 277:2311–2319

    Article  PubMed  CAS  Google Scholar 

  • Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, Sinkins SP (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6(10):e1001143. doi:10.1371/journal.ppat.1001143

  • Kenyon SG, Hunter MS (2007) Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. J Evol Biol 20:707–716

    Article  PubMed  CAS  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JMC, Ribeiro JMC, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Krause E, Mittapalli O, Margam VM, Li H-M, Meyer JM, Johnson RM, Romero-Severson J, Pagel VanZee J, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang NK, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Westberg J, Sapountzis P, Nasiund K, Lutnaes Y, Darby AC, Veneti Z, Chen LM, Braig HR, Garrett R, Bourtzis K, Andersson SGE (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106:5725–5730

    Article  PubMed  CAS  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133:193–199

    Article  Google Scholar 

  • Koukou K, Pavlikaki H, Kilias G, Werren JH, Bourtzis K, Alahiotis SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60:87–96

    PubMed  Google Scholar 

  • Kuechler SM, Dettner K, Kehl S (2010) Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). FEMS Microbiol Ecol 73:408–418

    CAS  Google Scholar 

  • Kuechler SM, Dettner K, Kehl S (2011) Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Appl Environ Microbiol 77:2869–2876

    Article  PubMed  CAS  Google Scholar 

  • Kuijper B, Pen I (2010) The evolution of haplodiploidy by male-killing endosymbionts: importance of population structure and endosymbiont mutualisms. J Evol Biol 23:40–52

    Article  PubMed  CAS  Google Scholar 

  • Lamelas A, Gosalbes MJ, Manzano-Marin A, Pereto J, Moya A, Latorre A (2011) Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet 7(11):e1002357. doi:10.1371/journal.pgen.1002357

  • Lamelas A, Perez-Brocal V, Gomez-Valero L, Gosalbes MJ, Moya A, Latorre A (2008) Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74:4236–4240

    Article  PubMed  CAS  Google Scholar 

  • Landmann F, Orsi GA, Loppin B, Sullivan W (2009) Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 5(3):e1000343. doi:10.1371/journal.ppat.1000343

  • Lawrence PO (2005) Morphogenesis and cytopathic effects of the Diachasmimorpha longicaudata entomopoxvirus in host haemocytes. J Insect Physiol 51:221–233

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PO, Akin D (1990) Virus-like particles in the accessory glands of Biosteres longicaudatus. Can J Zool 68:539–546

    Article  Google Scholar 

  • Lawrence PO, Matos LF (2005) Transmission of the Diachasmimorpha longicaudata rhabdovirus (DlRhV) to wasp offspring: an ultrastructural analysis. J Insect Physiol 51:235–241

    Article  PubMed  CAS  Google Scholar 

  • Leonardo TE (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecol Lett 7:461–468

    Article  Google Scholar 

  • Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc B 270:S209–S212

    Article  PubMed  Google Scholar 

  • Lewis Z, Champion de Crespigny FE, Sait SM, Tregenza T, Wedell N (2011) Wolbachia infection lowers fertile sperm transfer in a moth. Biol Lett 7:187–189

    Article  PubMed  CAS  Google Scholar 

  • Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennet MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant-Microbe Interact 23:835–845

    Article  PubMed  CAS  Google Scholar 

  • Li S, Falabella P, Giannantonio S, Fanti P, Battaglia D, Digilio MC, Völkl W, Sloggett JJ, Weisser W, Pennacchio F (2002) Pea aphid clonal resistance to the endophagous parasitoid Aphidius ervi. J Insect Physiol 48:971–980

    Article  PubMed  CAS  Google Scholar 

  • Login FH, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A, Weiss-Gayet M, Rochat D, Heddi A (2011) Antimicrobial peptides keep insect endosymbionts under control. Science 334:362–365

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Sanchez MJ, Neef A, Pereto J, Patino-Navarrete R, Pignatelli M, Latorre A, Moya A (2009) Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genet 5(11):e1000721. doi:10.1371/journal.pgen.1000721

  • Lukasik P, Hancock EL, Ferrari J, Godfray HCJ (2011) Grain aphid clones vary in frost resistance, but this trait is not influenced by facultative endosymbionts. Ecol Entomol 36:790–793

    Article  Google Scholar 

  • Majerus MEN (2003) Sex wars: genes, bacteria and biased sex ratios. Princeton University Press, Princeton

    Google Scholar 

  • Majerus TM, Majerus ME (2010) Intergenomic arms races: detection of a nuclear rescue gene of male-killing in a ladybird. PLoS Pathog 6(7):e1000987. doi:10.1371/journal.ppat.1000987

  • Margulis L (1993) Origins of species: acquired genomes and individuality. BioSystems 31(2–3):121–125

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (2009) Genome acquisition in horizontal gene transfer: symbiogenesis and macromolecular sequence analysis. Methods Mol Biol 532:181–191

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA 106:15394–15399

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. Genome Biol Evol 2:708–718

    PubMed  Google Scholar 

  • McCutcheon JP, von Dohlen CD (2011) An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 21:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • McLean AHC, van Asch M, Ferrari J, Godfray HCJ (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B 278:760–766

    Article  PubMed  CAS  Google Scholar 

  • Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6(12):e1001214. doi:10.1371/journal.ppat.1001214

  • Min K-T, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and death. Proc Nat Acad Sci USA 94:10792–10796

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005a) The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 102:16919–16926

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci USA 103:12803–12806

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Tran P, Gerardo NM (2005b) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Lòpez Garcia P (2009) Ten reasons to exclude viruses from tree of life. Nat Rev Microbiol 7:306–311

    PubMed  CAS  Google Scholar 

  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278

    Article  PubMed  Google Scholar 

  • Müller CB, Williams IS, Hardie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26:330–340

    Article  Google Scholar 

  • Murphy N, Banks JC, Whitfield JB, Austin AD (2008) Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol 47:378–395

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Hoshino M, Nakai M, Kunimi Y (2008) Novel RNA sequences associated with late male killing in Homona magnanima. Proc R Soc B 275:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Narita S, Kageyama D, Nomura M, Fukatsu T (2007) Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol 73:4332–4341

    Article  PubMed  CAS  Google Scholar 

  • Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, Della Vedova G, Cattonaro F, Caprio E, Pennacchio F (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 8(6):e1002735. doi:10.1371/journal.ppat.1002735

    Article  PubMed  CAS  Google Scholar 

  • Negri I, Pellecchia M, Mazzoglio PJ, Patetta A, Alma A (2006) Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proc Biol Sci 273:2409–2416

    Article  PubMed  CAS  Google Scholar 

  • Newton ILG, Bordenstein SR (2011) Correlations between bacterial ecology and mobile DNA. Curr Microbiol 62:198–208

    Article  PubMed  CAS  Google Scholar 

  • Normark BB (2004) Haplodiploidy as an outcome of coevolution between male-killing cytoplasmic elements and their hosts. Evolution 58:790–798

    PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B 275:293–299

    Article  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts of aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180

    Article  PubMed  Google Scholar 

  • Pannebakker BA, Loppin B, Elemans CP, Humblot L, Vavre F (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA 104:213–215

    Article  PubMed  CAS  Google Scholar 

  • Pannebakker BA, Pijnacker LP, Zwaan BJ, Beukeboom LW (2004) Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 47:299–303

    Article  PubMed  Google Scholar 

  • Pannebakker BA, Schidlo NS, Boskamp GJ, Dekker L, van Dooren TJ, Beukeboom LW, Zwaan BJ, Brakefield PM, van Alphen JJ (2005) Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis. J Evol Biol 18:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Patot S, Martinez J, Allemand R, Gandon S, Varaldi J, Fleury F (2010) Prevalence of a virus inducing behavioural manipulation near species range border. Mol Ecol 19:2995–3007

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258

    Article  PubMed  CAS  Google Scholar 

  • Perera S, Li Z, Pavlik L, Arif B (2010) Entomopoxviruses. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic, Norfolk, pp 83–102

    Google Scholar 

  • Perlman SJ, Magnus SA, Copley CR (2010) Pervasive associations between Cybaeus spiders and the bacterial symbiont Cardinium. J Invert Pathol 103:150–155

    Article  Google Scholar 

  • Perrot-Minnot MJ, Cheval B, Migeon A, Navajas M (2002) Contrasting effects of Wolbachia on cytoplasmic incompatibility and fecundity in the haplodiploid mite Tetranychus urticae. J Evol Biol 15:808–817

    Article  Google Scholar 

  • Pijls JWAM, van Steenbergen HJ, van Alphen JJM (1996) Asexuality cured: the relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 76:506–513

    Article  Google Scholar 

  • Poinsot D, Bourtzis K, Markakis G, Savakis C, Mercot H (1998) Wolbachia transfer from Drosophila melanogaster into D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150:227–237

    PubMed  CAS  Google Scholar 

  • Poinsot D, Charlat S, Mercot H (2003) On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 25:259–265

    Article  PubMed  Google Scholar 

  • Rancés E, Ye YH, Woolfit M, McGraw EA, O’Neill SL (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8(2):e1002548. doi:10.1371/journal.ppat.1002548

    Article  PubMed  CAS  Google Scholar 

  • Renault S (2012) RNA viruses in parasitoid wasps. In: Beckage NE, Drezen JM (eds) Parasitoid viruses. Elsevier, Amsterdam, pp 193–201

    Chapter  Google Scholar 

  • Renault S, Bigot S, Lemesle M, Sizaret P-Y, Bigot Y (2003) The cypovirus Diadromus pulchellus DpRV-2 is sporadically associated with the endoparasitoid wasp D. pulchellus and modulates the defence mechanisms of pupae of the parasitized leek-moth Acrolepiopsis assectella. J Gen Virol 84:1799–1807

    Article  PubMed  CAS  Google Scholar 

  • Renault S, Stasiak K, Federici BA, Bigot Y (2005) Commensal and mutualistic relationships of reoviruses with their parasitoid wasp hosts. J Insect Physiol 51:137–146

    Article  PubMed  CAS  Google Scholar 

  • Rigaud T, Juchault P (1995) Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice. J Evol Biol 8:249–255

    Article  Google Scholar 

  • Rigaud T, Moreau J (2004) A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion in a terrestrial isopod. Proc R Soc B 271:1941–1946

    Article  PubMed  Google Scholar 

  • Riparbelli MG, Giordano R, Ueyama M, Callaini G (2012) Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 7(1):e30045. doi:10.1371/journal.pone.0030045

  • Rodriguero MS, Confalonieri VA, Guedes JV, Lanteri AA (2010) Wolbachia infection in the tribe Naupactini (Coleoptera, Curculionidae): association between thelytokous parthenogenesis and infection status. Insect Mol Biol 19:631–640

    Article  PubMed  CAS  Google Scholar 

  • Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nature Rev Microbiol 3:917–924

    Article  CAS  Google Scholar 

  • Ros VI, Breeuwer JA (2009) The effects of, and interactions between, Cardinium and Wolbachia in the doubly infected spider mite Bryobia sarothamni. Heredity 102:413–422

    Article  PubMed  CAS  Google Scholar 

  • Ross L, Pen I, Shuker DM (2010) Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol Rev 85:807–828

    PubMed  Google Scholar 

  • Rossignol PA et al (1985) Enhanced mosquito blood-finding success on parasitemic host: evidence for vector-parasite mutualism. Proc Natl Acad Sci USA 82:7725–7727

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B 273:603–610

    Article  PubMed  Google Scholar 

  • Russell JE, Stouthamer R (2011) The genetics and evolution of obligate reproductive parasitism in Trichogramma pretiosum infected with parthenogenesis-inducing Wolbachia. Heredity 106:58–67

    Article  PubMed  CAS  Google Scholar 

  • Ryabov EV, Keane G, Naish N, Evered C, Winstanley D (2009) Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc Natl Acad Sci USA 21:8465–8470

    Article  Google Scholar 

  • Ryan F (2002) Darwin’s blind spot. Houghton Miffin, Boston

    Google Scholar 

  • Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34:369–376

    Article  PubMed  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):225–274

    Article  CAS  Google Scholar 

  • Sapp J (1994) Evolution by association. A history of symbiosis. Oxford University Press, New York

    Google Scholar 

  • Sapp J (2009) The new foundations of evolution. On the tree of life. Oxford University Press, New York

    Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  PubMed  CAS  Google Scholar 

  • Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Wilson ACC (2011) Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell Mol Life Sci 68:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Sicard M, Chevalier F, De Vlechouver M, Bouchon D, Greve P, Braquart-Varnier C (2010) Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia. Naturwissenschaften 97:819–826

    Article  PubMed  CAS  Google Scholar 

  • Silverman N, Paquette N (2008) The right resident bugs. Science 319:734–735

    Article  PubMed  CAS  Google Scholar 

  • Siozios S, Sapountzis P, Ioannidis P, Bourtzis K (2008) Wolbachia symbiosis and insect immune response. Insect Sci 15:89–100

    Article  Google Scholar 

  • Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178

    PubMed  CAS  Google Scholar 

  • Stasiak K, Renault S, Federici BA, Bigot Y (2005) Characteristics of pathogenic and mutualistic relationships of ascoviruses in field populations of parasitoid wasps. J Insect Physiol 51:103–115

    Article  PubMed  CAS  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BPHJ (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R (1997) Wolbachia-induced parthenogenesis. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 102–122

    Google Scholar 

  • Stouthamer R, van Tilborg M, de Jong JH, Nunney L, Luck RF (2001) Selfish element maintains sex in natural populations of a parasitoid wasp. Proc R Soc B 268:617–622

    Article  PubMed  CAS  Google Scholar 

  • Strand MR (2010) Polydnaviruses. In: Asgari S, Johnson K (eds) Insect virology. Caister Academic, Norfolk, pp 171–197

    Google Scholar 

  • Strand MR (2012) Polydnavirus gene products that interact with the host immune system. In: Beckage NE, Drezen JM (eds) Parasitoid viruses. Elsevier, Amsterdam, pp 149–161

    Chapter  Google Scholar 

  • Sugimoto TN, Ishikawa Y (2012) A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biol Lett 8:412–415

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC, Boca Raton

    Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  PubMed  CAS  Google Scholar 

  • Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SGE (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA 105:14934–14939

    Article  PubMed  CAS  Google Scholar 

  • Telschow A, Flor M, Kobayashi Y, Hammerstein P, Werren JH (2007) Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One 2(8):e701. doi:10.1371/journal.pone.0000701

  • Telschow A, Hammerstein P, Werren JH (2005) The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evolution 59:1607–1619

    PubMed  Google Scholar 

  • Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DT, Ironside JE, Rollinson D, Bouchon D, MacNeil C, Dick JT, Dunn AM (2004) Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc R Soc B 271:1783–1789

    Article  PubMed  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  PubMed  CAS  Google Scholar 

  • Toft C, Andersson SGE (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475

    Article  PubMed  CAS  Google Scholar 

  • Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868

    Article  PubMed  Google Scholar 

  • Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T (2010) “Candidatus Curculioniphilus buchneri”, a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol 76:275–282

    Article  PubMed  CAS  Google Scholar 

  • Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia induced cytoplasmic incompatibility. Science 296:1124–1126

    Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135

    Article  PubMed  CAS  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility-inducing microbes and their hosts. Evolution 48:1500–1513

    Article  Google Scholar 

  • Vala F, Egas M, Breeuwer JA, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700

    Article  PubMed  CAS  Google Scholar 

  • Varaldi J, Boulétreau M, Fleury F (2005) Cost induced by viral particles manipulating superparasitism behaviour in the parasitoid Leptopilina boulardi. Parasitology 131:161–168

    Article  PubMed  CAS  Google Scholar 

  • Varaldi J, Patot S, Nardin M, Gandon S (2009) A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv Parasitol 70:333–363

    Article  PubMed  Google Scholar 

  • Varaldi J, Martinez J, Patot S, Lepetit D, Fleury F, Gandon S (2012) An inherited virus manipulating the behavior of its parasitoid host: epidemiology and evolutionary consequences. In: Beckage NE, Drezen JM (eds) Parasitoid viruses. Elsevier, Amsterdam, pp 203–214

    Chapter  Google Scholar 

  • Vavre F, de Jong JH, Stouthamer R (2004) Cytogenetic mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 93:592–596

    Article  PubMed  CAS  Google Scholar 

  • Veneti Z, Bentley JK, Koana T, Braig HR, Hurst GD (2005) A functional dosage compensation complex required for male killing in Drosophila. Science 307:1461–1463

    Article  PubMed  CAS  Google Scholar 

  • Veneti Z, Clark ME, Karr TL, Savakis C, Bourtzis K (2004) Heads or tails: host-parasite interactions in the Drosophila-Wolbachia system. Appl Environ Microbiol 70:5366–5372

    Article  PubMed  CAS  Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM, Washington DC

    Google Scholar 

  • Vogel KJ, Moran NA (2011) Sources of variation in dietary requirements in an obligate nutritional symbiosis. Proc R Soc B 278:115–121

    Article  PubMed  Google Scholar 

  • Volkoff AN, Jouan V, Urbach S, Samain S, Bergoin M, Wincker P, et al (2010) Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog 6, e1000923. doi: 10.1371/journal.ppat.1000923

  • Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111

    Article  PubMed  Google Scholar 

  • Wang Y, Jehle JA (2009) Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic. J Invertebr Pathol 101:187–193

    Article  PubMed  CAS  Google Scholar 

  • Webb B, Strand MR (2005) The biology and genomics of polydnaviruses. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 6. Elsevier, Amsterdam, pp 323–360

    Chapter  Google Scholar 

  • Weeks AR, Breeuwer JA (2001) Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc Biol Sci 268:2245–2251

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5(5):e114. doi:10.1371/journal.pbio.0050114

  • Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM (2009) Evolution and diversity of Rickettsia bacteria. BMC Biol 7:6. doi:10.1186/1741-7007-7-6

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  PubMed  CAS  Google Scholar 

  • Werren JH (1998) Wolbachia and speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 245–260

    Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Beukeboom LW (1998) Sex determination, sex ratios and genetic conflict. Annu Rev Ecol Syst 29:233–261

    Article  Google Scholar 

  • Werren JH, O’Neil S (1997) The evolution of heritable symbionts. In: O’Neil S, Hoffmann AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, New York, pp 1–41

    Google Scholar 

  • Werren JH, Richards S, Desjardins CA et al (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261:55–63

    Article  CAS  Google Scholar 

  • Wetterwald C, Roth T, Kaeslin M, Annaheim M, Wespi G, Heller M, Mäser P, Roditi I, Pfister-Wilhelm R, Bézier A, Gyapay G, Drezen JM, Lanzrein B (2010) Identification of bracovirus particle proteins and analysis of their transcript levels at the stage of virion formation. J Gen Virol 91:2610–2619

    Article  PubMed  CAS  Google Scholar 

  • White JA (2011) Caught in the act: rapid, symbiont-driven evolution. BioEssays 33:823–829

    Article  PubMed  CAS  Google Scholar 

  • White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102:483–489

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JB (2002) Estimating the age of the polydnavirus/braconid wasp symbiosis. Proc Natl Acad Sci USA 99:7508–7513

    Article  PubMed  CAS  Google Scholar 

  • Wong ZS, Hedges LM, Brownlie JC, Johnson KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PLoS ONE 6(9):e25430. doi:10.1371/journal.pone.0025430

    Article  PubMed  CAS  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  PubMed  CAS  Google Scholar 

  • Zeh JA, Zeh DW (2006) Male-killing Wolbachia in a live-bearing arthropod: brood abortion as a constraint on the spread of a selfish microbe. J Invert Pathol 92:33–38

    Article  CAS  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Ren PP, Wang JL, Wang YF (2011a) Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila. PLoS One 6(4):e19512. doi:10.1371/journal.pone.0019512

  • Zheng Y, Wang JL, Liu C, Wang CP, Walker T, Wang YF (2011b) Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila. BMC Genomics 12:595. doi:10.1186/1471-2164-12-595

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pennacchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

White, J.A., Giorgini, M., Strand, M.R., Pennacchio, F. (2013). Arthropod Endosymbiosis and Evolution. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_17

Download citation

Publish with us

Policies and ethics