Skip to main content

The Arthropod Head

  • Chapter
  • First Online:

Abstract

The anterior region of arthropods is profoundly influenced by effects of condensation and integration that has taken place in various character complexes. Prominent examples are the cerebralization of the central nervous system, the integration of anterior appendages to encompass sensory function and food uptake, the integration of anterior segments covered by a continuous dorsal shield, and a condensation of the endoskeleton which has resulted in the partial obscuring of the segmental organization. The borders between these different complexes, however, do not necessarily correspond. The exact composition and origin of the ‘arthropod head’ is an enduring problem in arthropod evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Man betrachte die vollendeten Insecten! … Das Haupt ist seinem Platze nach immer vorn, ist der Versammlungsort der abgesonderten Sinne und enthält die regierenden Sinneswerkzeuge, in einem oder mehreren Nervenknoten, die wir Gehirn zu nennen pflegen, verbunden. J.W. von Goethe—Erster Entwurf einer allgemeinen Einleitung in die vergleichende Anatomie ausgehend von der Osteologie. WA II, Bd 8, S. 13.

References

  • Abzhanov A, Kaufman TC (1999) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128

    PubMed  CAS  Google Scholar 

  • Abzhanov A, Kaufman TC (2000) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283

    PubMed  CAS  Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    PubMed  CAS  Google Scholar 

  • Andersson A (1977) The organ of Bellonci in ostracodes: an ultrastructural study of the rod-shaped, or frontal, organ. Acta Zool (Stockh) 58:197–204

    Google Scholar 

  • Averof M (1998) Origin of the spider’s head. Nature 395:436–437

    PubMed  CAS  Google Scholar 

  • Averof M, Patel NH (1997) Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682–686

    PubMed  CAS  Google Scholar 

  • Bergström J, Hou X, Zhang X, Clausen S (2008) A new view of the Cambrian arthropod Fuxianhuia. GFF 130:189–201

    Google Scholar 

  • Bitsch C, Bitsch J (2002) The endoskeletal structures in arthropods: cytology, morphology and evolution. Arthropod Struct Dev 30:159–177

    PubMed  Google Scholar 

  • Boudreaux HB (1979) Significance of intersegmental tendon system in arthropod phylogeny and monophyletic classification of Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 551–586

    Google Scholar 

  • Brenneis G, Arango CP, Scholtz G (2011) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328

    PubMed  Google Scholar 

  • Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D reconstruction. J Morphol 271:169–189

    PubMed  Google Scholar 

  • Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724

    PubMed  Google Scholar 

  • Briggs DEG, Lieberman BS, Hendricks JR, Halgedahl SL, Jarrard RD (2008) Middle Cambrian arthropods from Utah. J Paleontol 82:238–254

    Google Scholar 

  • Budd GE (1996) The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 29:1–14

    Google Scholar 

  • Budd GE (1998) The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland). Trans R Soc Edinb Earth Sci 89:249–290

    Google Scholar 

  • Budd GE (2002) A palaeontological solution of the arthropod head problem. Nature 417:271–275

    PubMed  CAS  Google Scholar 

  • Budd GE (2008) Head structure in upper stem-group euarthropods. Palaeontology 51:561–573

    Google Scholar 

  • Budd GE, Daley AC (2011) The lobes and lobopods of Opabinia regalis from the middle Cambrian Burgess Shale. Lethaia 45:83–95

    Google Scholar 

  • Butterfield NJ (2002) Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155–171

    Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    PubMed  CAS  Google Scholar 

  • Casanova B (1991) Origine protocéphalique antennaire de la carapace chez les Leptostracés, Mysidacés et Eucarides (Crustacés). Cr hebd Acad Sci 312(III):461–468

    Google Scholar 

  • Chen J, Edgecombe GD, Ramsköld L, Zhou G (1995) Head segmentation in Early Cambrian Fuxianhuia: Implications for arthropod evolution. Science 268:1339–1343

    PubMed  CAS  Google Scholar 

  • Chen J, Waloszek D, Maas A (2004) A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Google Scholar 

  • Cisne JL (1974) Trilobites and the origin of arthropods. Science 186:13–18

    PubMed  CAS  Google Scholar 

  • Cisne JL (1975) Anatomy of Triarthrus and the relationships of the Trilobita. Fossils Strata 4:45–63

    Google Scholar 

  • Daley AC, Budd GE, Caron J, Edgecombe GD, Collins D (2009) The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323:1597–1600

    PubMed  CAS  Google Scholar 

  • Denis JR, Bitsch J (1973) Structure céphalique dans les ordres des insectes. In: Grassé PP (ed) Traité de zoologie: Anatomie, systématiques, biologie, tome VIII Insectes: tête, aile, vol. Masson, Paris, pp 101–593

    Google Scholar 

  • Dewel RA, Dewel WC (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): A key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zool J Linn Soc 116:35–49

    Google Scholar 

  • Domínguez Camacho M (2011) Cephalic musculature in five genera of Symphyla (Myriapoda). Arthropod Struct Dev 40:159–185

    PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    PubMed  CAS  Google Scholar 

  • Dzik J (2011) The xenusian-to-anomalocaridid transition within the lobopodians. Boll Soc Paleontol Ital 50:65–74

    Google Scholar 

  • Edgecombe GD (2004) Morphological data, extant Myriapoda, and the myriapod stem-group. Contrib Zool 73(3):207–252

    Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87

    PubMed  Google Scholar 

  • Edgecombe GD, García-Bellido DC, Paterson JR (2011) A new leanchoiliid megacheiran arthropod from the Lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol Polon 56:385–400

    Google Scholar 

  • Elofsson R (1971) The ultrastructure of a chemoreceptor organ in the head of copepod crustaceans. Acta Zool 52:299–315

    Google Scholar 

  • Elofsson R, Lake PS (1971) On the cavity receptor organ (X-organ or organ of Bellonci) of Artemia salina (Crustacea: Anostraca). Ztschr Zellforsch mikr Anat 326:319–326

    Google Scholar 

  • Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209

    PubMed  CAS  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23

    PubMed  Google Scholar 

  • Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122

    PubMed  Google Scholar 

  • Eriksson ME, Terfelt F, Elofsson R, Marone F (2012) Internal soft-tissue anatomy of Cambrian ‘Orsten’ arthropods as revealed by synchrotron x-ray tomographic microscopy. PLOSone 7(8):e42582. doi:10.1371/journal.pone.0042582

  • Fanenbruck M (2003) Die Anatomie des Kopfes und des cephalen Skelett-Muskelsystems der Crustacea, Myriapoda und Hexapoda: Ein Beitrag zum phylogenetischen System der Mandibulata und zur Kenntnis der Herkunft der Remipedia und Tracheata. Doctoral Thesis, Fakultät für Biologie, Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Firstman B (1973) The relationship of the chelicerate arterial system to the evolution of the endosternite. J Arachnol 1:1–54

    Google Scholar 

  • Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Genes Evol. doi:10.1007/s00427-013-0435-x

  • Fritsch M, Kaji T, Olesen J, Richter S (2013) The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): Insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology. doi:10.1007/s00435-012-0173-0

    Google Scholar 

  • Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): An immunohistochemical survey. J Morphol 271:1457–1481

    PubMed  Google Scholar 

  • Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; articulata versus Ecdysozoa revisited. Zoology 106:303–326

    PubMed  CAS  Google Scholar 

  • Gruner HE (1993) Arthropoda (ohne Insecta). In: Gruner HE (ed) Lehrbuch der speziellen Zoologie. Gustav Fischer Verlag, Jena. I(4):1–1279

    Google Scholar 

  • Gruner HE, Scholtz G (2004) Segmentation, tagmata, and appendages. In: Forest J, von Vaupel Klein JC, Schram FR (eds) Treatise on Zoology—anatomy, taxonomy, biology. The Crustacea revised and updated from the Traité de Zoologie, vol 1. Brill, Leiden, pp13–57

    Google Scholar 

  • Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    PubMed  CAS  Google Scholar 

  • Haug JT, Briggs DE, Haug C (2012a) Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol Biol 12:162. doi:10.1186/1471-2148-12-162

  • Haug JT, Waloszek D, Maas A, Liu Y, Haug C (2012b) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–399

    Google Scholar 

  • Hessler RR (1964) The Cephalocarida: comparative skeletomusculature. Mem Connect Acad Arts Sci 16:1–97

    Google Scholar 

  • Heuer CM, Loesel R (2009) Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphology 128:219–226

    Google Scholar 

  • Heuer CM, Müller CHG, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13. doi:10.1186/1742-9994-7-13

  • Janssen R, Damen WGM, Budd GE. (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50. doi:10.1186/1471-2148-11-50

  • Janssen R, Prpic N-M, Damen WGM (2006) A review of the correlation of tergites, sternites, and leg pairs in diplopods. Front Zool 3:2

    PubMed  Google Scholar 

  • Kimm MA, Prpic NM (2006) Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorphology 125:147–155

    Google Scholar 

  • Kirsch R, Richter S (2007) The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with Confocal Scanning Microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 36:143–156

    PubMed  Google Scholar 

  • Koch M (2000) The cuticular cephalic endoskeleton of primarily wingless hexapods: Ancestral state and evolutionary changes. Pedobiologia 44:374–385

    Google Scholar 

  • Koch M (2003) Monophyly of the Myriapoda? Reliability of current arguments. Afr Invertebr 44:137–153

    Google Scholar 

  • Lauterbach KE (1989) Das Pan-Monophylum—Ein Hilfsmittel für die Praxis der phylogenetischen Systematik. Zool Anz 223:139–156

    Google Scholar 

  • Legg DA, Sutton MD, EdgecombeGD, Caron J-B (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc R Soc B doi:10.1098/rspb.2012.1958

  • Liu J, Shu D, Han J, Zhang Z, Zhang X (2006) A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte. Acta Pal Pol 51:215–222

    Google Scholar 

  • Liu J, Shu D, Han J, Zhang Z, Zhang X (2007) Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China. Acta Zool 88:279–288

    Google Scholar 

  • Liu J, Steiner M, Dunlop JA, Keupp H, Shu D, Ou Q, Han J, Zhang Z, Zhang X (2011) An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature 470:526–530

    PubMed  CAS  Google Scholar 

  • Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acd Sci USA 106:13892–13896

    CAS  Google Scholar 

  • Ma X, Hou X, Aldridge RJ, Siveter DJ, Siveter DJ, Gabbott SE, Purnell MA, Parker AR, Edgecombe GD (2012a) Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance. Arthropod Struct Dev 41:495–504

    PubMed  Google Scholar 

  • Ma X, Hou X, Bergström J (2009) Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Struct Dev 38:271–291

    PubMed  Google Scholar 

  • Ma X, Hou X, Edgecombe GD, Strausfeld NJ (2012b) Complex brain and optic lobes in an early Cambrian arthropod. Nature 490:258–262

    PubMed  CAS  Google Scholar 

  • Maas A, Waloszek D, Müller KJ (2003) Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian ‘Orsten’ of Sweden. Fossils Strata 49:1–238

    Google Scholar 

  • Manton SM (1964) Mandibular mechanisms and the evolution of arthropods. Phil Trans R Soc B 247:1–183

    Google Scholar 

  • Manuel M, Jager M, Murienne J, Clabaut C, Le Guyade H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491

    PubMed  Google Scholar 

  • Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148

    PubMed  CAS  Google Scholar 

  • Mayer G (2006) Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthr Struct Dev 35:231–245

    Google Scholar 

  • Mayer G, Harzsch S (2008) Distribution of 5-HT-like immunoreactivity in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): Implications for nervous system evolution in Arthropoda. J Comp Neurol 507:1196–1208

    PubMed  Google Scholar 

  • Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255. doi:10.1186/1471-2148-10-255

  • Meier R, Richter S (1992) Suggestions for a more precise usage of proper names of taxa. Ambiguities related to the stem lineage concept. Ztschr Zool Syst Evol-forsch 30:81–88

    Google Scholar 

  • Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): Morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17

    PubMed  Google Scholar 

  • Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216

    PubMed  Google Scholar 

  • Møller OS, Olesen J, Høeg JT (2004) On the larval development of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca), with notes on the basal phylogeny of the Branchiopoda. Zoomorphology 123:107–123

    Google Scholar 

  • Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3:1261. doi:10.1038/ncomms2272

    PubMed  Google Scholar 

  • Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci USA 106:13897–13902

    PubMed  CAS  Google Scholar 

  • Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM (2012) Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade Panarthropoda. J Morphol 273:1227–1245

    PubMed  Google Scholar 

  • Pigliucci M, Müller GB (2010) Elements of an extended evolutionary synthesis. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 3–18

    Google Scholar 

  • Posnien NF, Bashasab F, Bucher G (2009) The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11:479–487

    Google Scholar 

  • Ramsköld L, Chen J (1998) Cambrian lobopodians: morphology and phylogeny. In: Edgecombe GD (ed) Arthropod fossils and phylogeny. Columbia University Press, New York, pp 107–150

    Google Scholar 

  • Ramsköld L, Chen J, Edgecombe GD, Zhou G (1997) Cindarella and the arachnate clade Xandarellida (Arthropoda, Early Cambrian) from China. Trans R Soc Edinb Earth Sci 88:19–38

    Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    PubMed  CAS  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny—suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29. doi:10.1186/1742-9994-7-29

  • Schaeper ND, Pechmann M, Damen WG, Prpic NM, Wimmer EA (2010) Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344:363–376

    PubMed  CAS  Google Scholar 

  • Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215

    Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships (Crustacean Issues 16). CRC Press, Boca Raton, pp 139–165

    Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415

    PubMed  Google Scholar 

  • Shultz JW (1999) Muscular anatomy of a whipspider, Phrynus longipes (Pocock) (Arachnida: Amblypygi), and its evolutionary significance. Zool J Linn Soc 126:81–116

    Google Scholar 

  • Shultz JW (2000) Skeletomuscular anatomy of the harvestman Leiobunum aldrichi (Weed, 1893) (Arachnida: Opiliones) and its evolutionary significance. Zool J Linn Soc 128:401–438

    Google Scholar 

  • Shultz JW (2001) Gross muscular anatomy of Limulus polyphemus (Xiphosura, Chelicerata) and its bearing on evolution in the Arachnida. J Arachnol 29:283–303

    Google Scholar 

  • Shultz JW (2007) Morphology of the prosomal endoskeleton of Scorpiones (Arachnida) and a new hypothesis for the evolution of cuticular cephalic endoskeletons in arthropods. Arthropod Struct Dev 36:77–102

    PubMed  Google Scholar 

  • Siewing R (1969) Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. Parey, Hamburg

    Google Scholar 

  • Sombke A, Lipke E, Kenning M, Müller C, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): Implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1. doi:10.1186/1471-2202-13-1

  • Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthr Struct Dev 40:221–243

    Google Scholar 

  • Stein M (2010) A new arthropod from the Early Cambrian of North Greenland with a ‘great appendage’ like antennula. Zool J Linn Soc 158:477–500

    Google Scholar 

  • Stein M, Selden PA (2012) A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. J Syst Palaeontol 10:361–383

    Google Scholar 

  • Stein M, Waloszek D, Maas A (2005) Oelandocaris oelandica and the stem lineage of Crustacea. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships (Crustacean Issues 16). CRC/Taylor and Francis, Boca Raton, pp 55–72

    Google Scholar 

  • Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14. doi:10.1186/2041-9139-1-14

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance and historical significance. Belknap Press, Cambridge

    Google Scholar 

  • Strausfeld NJ, Strausfeld MC, Stowe S, Rowell D, Loesel R (2006) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophorans Euperipatoides rowelli. Arthropod Struct Dev 135:169–196

    Google Scholar 

  • Szucsich NU, Pennerstorfer M, Wirkner CS (2011) The mouthparts of Scutigerella immaculata: correspondences and variation among serially homologous head appendages. Arthropod Struct Dev 40:105–121

    PubMed  Google Scholar 

  • Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675

    PubMed  CAS  Google Scholar 

  • Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99

    Google Scholar 

  • Vannier J, Chen J (2002) Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35:107–120

    Google Scholar 

  • Vogt L (2008) Learning from Linnaeus: towards developing the foundations for a general structure concept for morphology. Zootaxa 1950:123–152

    Google Scholar 

  • Vogt L, Bartolomaeus T, Giribet G (2010) The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26:301–325

    Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell′Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29(3):1031–1045

    Google Scholar 

  • Waloszek D, Chen J, Maas A, Wang X (2005) Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev 34:189–205

    Google Scholar 

  • Waloszek D, Dunlop J (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian “Orsten” of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446

    Google Scholar 

  • Waloszek D, Maas A, Chen J, Stein M (2007) Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeogr Palaeocl 254:273–287

    Google Scholar 

  • Whittington HB (1993) Anatomy of the Ordovician trilobite Placoparia. Phil Trans R Soc B 339:109–118

    Google Scholar 

  • Wirkner CS, Richter S (2010) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26:143–167

    Google Scholar 

  • Zantke J, Wolff C, Scholtz G (2008) Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): Implications for the phylogenetic position of Tardigrada. Zoomorphology 127:21–36

    Google Scholar 

  • Zhang X, Briggs DEG (2007) The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale. Lethaia 40:161–173

    Google Scholar 

  • Zhang X, Shu D, Erwin DH (2007) Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. J Paleontol 81(68):1–52

    Google Scholar 

Download references

Acknowledgments

We thank the editors for helpful comments improving the manuscript and Lucy Cathrow for a careful copy editing. The studies on the evolution of the arthropod brain have been supported by the DFG (RI 837/9–1, 2; 10–1, 2). MS is supported by the Carlsberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, S., Stein, M., Frase, T., Szucsich, N.U. (2013). The Arthropod Head. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_10

Download citation

Publish with us

Policies and ethics