The Arthropod Head

  • Stefan Richter
  • Martin Stein
  • Thomas Frase
  • Nikolaus U. Szucsich


The anterior region of arthropods is profoundly influenced by effects of condensation and integration that has taken place in various character complexes. Prominent examples are the cerebralization of the central nervous system, the integration of anterior appendages to encompass sensory function and food uptake, the integration of anterior segments covered by a continuous dorsal shield, and a condensation of the endoskeleton which has resulted in the partial obscuring of the segmental organization. The borders between these different complexes, however, do not necessarily correspond. The exact composition and origin of the ‘arthropod head’ is an enduring problem in arthropod evolution.


Head Capsule Anterior Appendage Crown Group Stem Group Neurite Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the editors for helpful comments improving the manuscript and Lucy Cathrow for a careful copy editing. The studies on the evolution of the arthropod brain have been supported by the DFG (RI 837/9–1, 2; 10–1, 2). MS is supported by the Carlsberg Foundation.


  1. Abzhanov A, Kaufman TC (1999) Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. Development 126:1121–1128PubMedGoogle Scholar
  2. Abzhanov A, Kaufman TC (2000) Embryonic expression patterns of the Hox genes of the crayfish Procambarus clarkii (Crustacea, Decapoda). Evol Dev 2:271–283PubMedGoogle Scholar
  3. Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedGoogle Scholar
  4. Andersson A (1977) The organ of Bellonci in ostracodes: an ultrastructural study of the rod-shaped, or frontal, organ. Acta Zool (Stockh) 58:197–204Google Scholar
  5. Averof M (1998) Origin of the spider’s head. Nature 395:436–437PubMedGoogle Scholar
  6. Averof M, Patel NH (1997) Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682–686PubMedGoogle Scholar
  7. Bergström J, Hou X, Zhang X, Clausen S (2008) A new view of the Cambrian arthropod Fuxianhuia. GFF 130:189–201Google Scholar
  8. Bitsch C, Bitsch J (2002) The endoskeletal structures in arthropods: cytology, morphology and evolution. Arthropod Struct Dev 30:159–177PubMedGoogle Scholar
  9. Boudreaux HB (1979) Significance of intersegmental tendon system in arthropod phylogeny and monophyletic classification of Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 551–586Google Scholar
  10. Brenneis G, Arango CP, Scholtz G (2011) Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 221:309–328PubMedGoogle Scholar
  11. Brenneis G, Richter S (2010) Architecture of the nervous system in Mystacocarida (Arthropoda, Crustacea)—an immunohistochemical study and 3D reconstruction. J Morphol 271:169–189PubMedGoogle Scholar
  12. Brenneis G, Ungerer P, Scholtz G (2008) The chelifores of sea spiders (Arthropoda, Pycnogonida) are the appendages of the deutocerebral segment. Evol Dev 10:717–724PubMedGoogle Scholar
  13. Briggs DEG, Lieberman BS, Hendricks JR, Halgedahl SL, Jarrard RD (2008) Middle Cambrian arthropods from Utah. J Paleontol 82:238–254Google Scholar
  14. Budd GE (1996) The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia 29:1–14Google Scholar
  15. Budd GE (1998) The morphology and phylogenetic significance of Kerygmachela kierkegaardi Budd (Buen Formation, Lower Cambrian, N Greenland). Trans R Soc Edinb Earth Sci 89:249–290Google Scholar
  16. Budd GE (2002) A palaeontological solution of the arthropod head problem. Nature 417:271–275PubMedGoogle Scholar
  17. Budd GE (2008) Head structure in upper stem-group euarthropods. Palaeontology 51:561–573Google Scholar
  18. Budd GE, Daley AC (2011) The lobes and lobopods of Opabinia regalis from the middle Cambrian Burgess Shale. Lethaia 45:83–95Google Scholar
  19. Butterfield NJ (2002) Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155–171Google Scholar
  20. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924PubMedGoogle Scholar
  21. Casanova B (1991) Origine protocéphalique antennaire de la carapace chez les Leptostracés, Mysidacés et Eucarides (Crustacés). Cr hebd Acad Sci 312(III):461–468Google Scholar
  22. Chen J, Edgecombe GD, Ramsköld L, Zhou G (1995) Head segmentation in Early Cambrian Fuxianhuia: Implications for arthropod evolution. Science 268:1339–1343PubMedGoogle Scholar
  23. Chen J, Waloszek D, Maas A (2004) A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20Google Scholar
  24. Cisne JL (1974) Trilobites and the origin of arthropods. Science 186:13–18PubMedGoogle Scholar
  25. Cisne JL (1975) Anatomy of Triarthrus and the relationships of the Trilobita. Fossils Strata 4:45–63Google Scholar
  26. Daley AC, Budd GE, Caron J, Edgecombe GD, Collins D (2009) The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323:1597–1600PubMedGoogle Scholar
  27. Denis JR, Bitsch J (1973) Structure céphalique dans les ordres des insectes. In: Grassé PP (ed) Traité de zoologie: Anatomie, systématiques, biologie, tome VIII Insectes: tête, aile, vol. Masson, Paris, pp 101–593Google Scholar
  28. Dewel RA, Dewel WC (1996) The brain of Echiniscus viridissimus Peterfi, 1956 (Heterotardigrada): A key to understanding the phylogenetic position of tardigrades and the evolution of the arthropod head. Zool J Linn Soc 116:35–49Google Scholar
  29. Domínguez Camacho M (2011) Cephalic musculature in five genera of Symphyla (Myriapoda). Arthropod Struct Dev 40:159–185PubMedGoogle Scholar
  30. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749PubMedGoogle Scholar
  31. Dzik J (2011) The xenusian-to-anomalocaridid transition within the lobopodians. Boll Soc Paleontol Ital 50:65–74Google Scholar
  32. Edgecombe GD (2004) Morphological data, extant Myriapoda, and the myriapod stem-group. Contrib Zool 73(3):207–252Google Scholar
  33. Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87PubMedGoogle Scholar
  34. Edgecombe GD, García-Bellido DC, Paterson JR (2011) A new leanchoiliid megacheiran arthropod from the Lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol Polon 56:385–400Google Scholar
  35. Elofsson R (1971) The ultrastructure of a chemoreceptor organ in the head of copepod crustaceans. Acta Zool 52:299–315Google Scholar
  36. Elofsson R, Lake PS (1971) On the cavity receptor organ (X-organ or organ of Bellonci) of Artemia salina (Crustacea: Anostraca). Ztschr Zellforsch mikr Anat 326:319–326Google Scholar
  37. Eriksson BJ, Budd GE (2000) Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev 29:197–209PubMedGoogle Scholar
  38. Eriksson BJ, Tait NN, Budd GE (2003) Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system. J Morphol 255:1–23PubMedGoogle Scholar
  39. Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122PubMedGoogle Scholar
  40. Eriksson ME, Terfelt F, Elofsson R, Marone F (2012) Internal soft-tissue anatomy of Cambrian ‘Orsten’ arthropods as revealed by synchrotron x-ray tomographic microscopy. PLOSone 7(8):e42582. doi: 10.1371/journal.pone.0042582
  41. Fanenbruck M (2003) Die Anatomie des Kopfes und des cephalen Skelett-Muskelsystems der Crustacea, Myriapoda und Hexapoda: Ein Beitrag zum phylogenetischen System der Mandibulata und zur Kenntnis der Herkunft der Remipedia und Tracheata. Doctoral Thesis, Fakultät für Biologie, Ruhr-Universität Bochum, BochumGoogle Scholar
  42. Firstman B (1973) The relationship of the chelicerate arterial system to the evolution of the endosternite. J Arachnol 1:1–54Google Scholar
  43. Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Genes Evol. doi: 10.1007/s00427-013-0435-x
  44. Fritsch M, Kaji T, Olesen J, Richter S (2013) The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): Insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology. doi: 10.1007/s00435-012-0173-0 Google Scholar
  45. Fritsch M, Richter S (2010) The formation of the nervous system during larval development in Triops cancriformis (Bosc) (Crustacea, Branchiopoda): An immunohistochemical survey. J Morphol 271:1457–1481PubMedGoogle Scholar
  46. Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; articulata versus Ecdysozoa revisited. Zoology 106:303–326PubMedGoogle Scholar
  47. Gruner HE (1993) Arthropoda (ohne Insecta). In: Gruner HE (ed) Lehrbuch der speziellen Zoologie. Gustav Fischer Verlag, Jena. I(4):1–1279Google Scholar
  48. Gruner HE, Scholtz G (2004) Segmentation, tagmata, and appendages. In: Forest J, von Vaupel Klein JC, Schram FR (eds) Treatise on Zoology—anatomy, taxonomy, biology. The Crustacea revised and updated from the Traité de Zoologie, vol 1. Brill, Leiden, pp13–57Google Scholar
  49. Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213PubMedGoogle Scholar
  50. Haug JT, Briggs DE, Haug C (2012a) Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol Biol 12:162. doi: 10.1186/1471-2148-12-162
  51. Haug JT, Waloszek D, Maas A, Liu Y, Haug C (2012b) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–399Google Scholar
  52. Hessler RR (1964) The Cephalocarida: comparative skeletomusculature. Mem Connect Acad Arts Sci 16:1–97Google Scholar
  53. Heuer CM, Loesel R (2009) Three-dimensional reconstruction of mushroom body neuropils in the polychaete species Nereis diversicolor and Harmothoe areolata (Phyllodocida, Annelida). Zoomorphology 128:219–226Google Scholar
  54. Heuer CM, Müller CHG, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13. doi: 10.1186/1742-9994-7-13
  55. Janssen R, Damen WGM, Budd GE. (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50. doi: 10.1186/1471-2148-11-50
  56. Janssen R, Prpic N-M, Damen WGM (2006) A review of the correlation of tergites, sternites, and leg pairs in diplopods. Front Zool 3:2PubMedGoogle Scholar
  57. Kimm MA, Prpic NM (2006) Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorphology 125:147–155Google Scholar
  58. Kirsch R, Richter S (2007) The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with Confocal Scanning Microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthropod Struct Dev 36:143–156PubMedGoogle Scholar
  59. Koch M (2000) The cuticular cephalic endoskeleton of primarily wingless hexapods: Ancestral state and evolutionary changes. Pedobiologia 44:374–385Google Scholar
  60. Koch M (2003) Monophyly of the Myriapoda? Reliability of current arguments. Afr Invertebr 44:137–153Google Scholar
  61. Lauterbach KE (1989) Das Pan-Monophylum—Ein Hilfsmittel für die Praxis der phylogenetischen Systematik. Zool Anz 223:139–156Google Scholar
  62. Legg DA, Sutton MD, EdgecombeGD, Caron J-B (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc R Soc B doi: 10.1098/rspb.2012.1958
  63. Liu J, Shu D, Han J, Zhang Z, Zhang X (2006) A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte. Acta Pal Pol 51:215–222Google Scholar
  64. Liu J, Shu D, Han J, Zhang Z, Zhang X (2007) Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China. Acta Zool 88:279–288Google Scholar
  65. Liu J, Steiner M, Dunlop JA, Keupp H, Shu D, Ou Q, Han J, Zhang Z, Zhang X (2011) An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature 470:526–530PubMedGoogle Scholar
  66. Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH (2009) Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acd Sci USA 106:13892–13896Google Scholar
  67. Ma X, Hou X, Aldridge RJ, Siveter DJ, Siveter DJ, Gabbott SE, Purnell MA, Parker AR, Edgecombe GD (2012a) Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance. Arthropod Struct Dev 41:495–504PubMedGoogle Scholar
  68. Ma X, Hou X, Bergström J (2009) Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Struct Dev 38:271–291PubMedGoogle Scholar
  69. Ma X, Hou X, Edgecombe GD, Strausfeld NJ (2012b) Complex brain and optic lobes in an early Cambrian arthropod. Nature 490:258–262PubMedGoogle Scholar
  70. Maas A, Waloszek D, Müller KJ (2003) Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian ‘Orsten’ of Sweden. Fossils Strata 49:1–238Google Scholar
  71. Manton SM (1964) Mandibular mechanisms and the evolution of arthropods. Phil Trans R Soc B 247:1–183Google Scholar
  72. Manuel M, Jager M, Murienne J, Clabaut C, Le Guyade H (2006) Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol 216:481–491PubMedGoogle Scholar
  73. Maxmen A, Browne WE, Martindale MQ, Giribet G (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437:1144–1148PubMedGoogle Scholar
  74. Mayer G (2006) Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthr Struct Dev 35:231–245Google Scholar
  75. Mayer G, Harzsch S (2008) Distribution of 5-HT-like immunoreactivity in the trunk of Metaperipatus blainvillei (Onychophora, Peripatopsidae): Implications for nervous system evolution in Arthropoda. J Comp Neurol 507:1196–1208PubMedGoogle Scholar
  76. Mayer G, Whitington PM, Sunnucks P, Pflüger H-J (2010) A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods. BMC Evol Biol 10:255. doi: 10.1186/1471-2148-10-255
  77. Meier R, Richter S (1992) Suggestions for a more precise usage of proper names of taxa. Ambiguities related to the stem lineage concept. Ztschr Zool Syst Evol-forsch 30:81–88Google Scholar
  78. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): Morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17PubMedGoogle Scholar
  79. Mittmann B, Wolff C (2012) Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 222:189–216PubMedGoogle Scholar
  80. Møller OS, Olesen J, Høeg JT (2004) On the larval development of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca), with notes on the basal phylogeny of the Branchiopoda. Zoomorphology 123:107–123Google Scholar
  81. Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3:1261. doi: 10.1038/ncomms2272 PubMedGoogle Scholar
  82. Pavlopoulos A, Kontarakis Z, Liubicich DM, Serano JM, Akam M, Patel NH, Averof M (2009) Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci USA 106:13897–13902PubMedGoogle Scholar
  83. Persson DK, Halberg KA, Jørgensen A, Møbjerg N, Kristensen RM (2012) Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade Panarthropoda. J Morphol 273:1227–1245PubMedGoogle Scholar
  84. Pigliucci M, Müller GB (2010) Elements of an extended evolutionary synthesis. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 3–18Google Scholar
  85. Posnien NF, Bashasab F, Bucher G (2009) The insect upper lip (labrum) is a nonsegmental appendage-like structure. Evol Dev 11:479–487Google Scholar
  86. Ramsköld L, Chen J (1998) Cambrian lobopodians: morphology and phylogeny. In: Edgecombe GD (ed) Arthropod fossils and phylogeny. Columbia University Press, New York, pp 107–150Google Scholar
  87. Ramsköld L, Chen J, Edgecombe GD, Zhou G (1997) Cindarella and the arachnate clade Xandarellida (Arthropoda, Early Cambrian) from China. Trans R Soc Edinb Earth Sci 88:19–38Google Scholar
  88. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083PubMedGoogle Scholar
  89. Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny—suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29. doi: 10.1186/1742-9994-7-29
  90. Schaeper ND, Pechmann M, Damen WG, Prpic NM, Wimmer EA (2010) Evolutionary plasticity of collier function in head development of diverse arthropods. Dev Biol 344:363–376PubMedGoogle Scholar
  91. Scholtz G (1997) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 317–332Google Scholar
  92. Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215Google Scholar
  93. Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships (Crustacean Issues 16). CRC Press, Boca Raton, pp 139–165Google Scholar
  94. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415PubMedGoogle Scholar
  95. Shultz JW (1999) Muscular anatomy of a whipspider, Phrynus longipes (Pocock) (Arachnida: Amblypygi), and its evolutionary significance. Zool J Linn Soc 126:81–116Google Scholar
  96. Shultz JW (2000) Skeletomuscular anatomy of the harvestman Leiobunum aldrichi (Weed, 1893) (Arachnida: Opiliones) and its evolutionary significance. Zool J Linn Soc 128:401–438Google Scholar
  97. Shultz JW (2001) Gross muscular anatomy of Limulus polyphemus (Xiphosura, Chelicerata) and its bearing on evolution in the Arachnida. J Arachnol 29:283–303Google Scholar
  98. Shultz JW (2007) Morphology of the prosomal endoskeleton of Scorpiones (Arachnida) and a new hypothesis for the evolution of cuticular cephalic endoskeletons in arthropods. Arthropod Struct Dev 36:77–102PubMedGoogle Scholar
  99. Siewing R (1969) Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. Parey, HamburgGoogle Scholar
  100. Sombke A, Lipke E, Kenning M, Müller C, Hansson BS, Harzsch S (2012) Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): Implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 13:1. doi: 10.1186/1471-2202-13-1
  101. Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthr Struct Dev 40:221–243Google Scholar
  102. Stein M (2010) A new arthropod from the Early Cambrian of North Greenland with a ‘great appendage’ like antennula. Zool J Linn Soc 158:477–500Google Scholar
  103. Stein M, Selden PA (2012) A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. J Syst Palaeontol 10:361–383Google Scholar
  104. Stein M, Waloszek D, Maas A (2005) Oelandocaris oelandica and the stem lineage of Crustacea. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships (Crustacean Issues 16). CRC/Taylor and Francis, Boca Raton, pp 55–72Google Scholar
  105. Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14. doi: 10.1186/2041-9139-1-14
  106. Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance and historical significance. Belknap Press, CambridgeGoogle Scholar
  107. Strausfeld NJ, Strausfeld MC, Stowe S, Rowell D, Loesel R (2006) The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophorans Euperipatoides rowelli. Arthropod Struct Dev 135:169–196Google Scholar
  108. Szucsich NU, Pennerstorfer M, Wirkner CS (2011) The mouthparts of Scutigerella immaculata: correspondences and variation among serially homologous head appendages. Arthropod Struct Dev 40:105–121PubMedGoogle Scholar
  109. Telford MJ, Thomas RH (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675PubMedGoogle Scholar
  110. Ungerer P, Wolff C (2005) External morphology of limb development in the amphipod Orchestia cavimana (Crustacea, Malacostraca, Peracarida). Zoomorphology 124:89–99Google Scholar
  111. Vannier J, Chen J (2002) Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35:107–120Google Scholar
  112. Vogt L (2008) Learning from Linnaeus: towards developing the foundations for a general structure concept for morphology. Zootaxa 1950:123–152Google Scholar
  113. Vogt L, Bartolomaeus T, Giribet G (2010) The linguistic problem of morphology: structure versus homology and the standardization of morphological data. Cladistics 26:301–325Google Scholar
  114. von Reumont BM, Jenner RA, Wills MA, Dell′Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29(3):1031–1045Google Scholar
  115. Waloszek D, Chen J, Maas A, Wang X (2005) Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev 34:189–205Google Scholar
  116. Waloszek D, Dunlop J (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian “Orsten” of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446Google Scholar
  117. Waloszek D, Maas A, Chen J, Stein M (2007) Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeogr Palaeocl 254:273–287Google Scholar
  118. Whittington HB (1993) Anatomy of the Ordovician trilobite Placoparia. Phil Trans R Soc B 339:109–118Google Scholar
  119. Wirkner CS, Richter S (2010) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26:143–167Google Scholar
  120. Zantke J, Wolff C, Scholtz G (2008) Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): Implications for the phylogenetic position of Tardigrada. Zoomorphology 127:21–36Google Scholar
  121. Zhang X, Briggs DEG (2007) The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale. Lethaia 40:161–173Google Scholar
  122. Zhang X, Shu D, Erwin DH (2007) Cambrian naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships. J Paleontol 81(68):1–52Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Richter
    • 1
  • Martin Stein
    • 2
  • Thomas Frase
    • 1
  • Nikolaus U. Szucsich
    • 3
  1. 1.Allgemeine und Spezielle ZoologieUniversität RostockRostockGermany
  2. 2.Danish Museum of Natural HistoryUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Integrative ZoologyUniversity of ViennaViennaAustria

Personalised recommendations