Skip to main content

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 2))

  • 1488 Accesses

Abstract

Pitch is a psychological phenomenon, therefore also called virtual pitch, which is related to the physical spectrum of a sound on a one dimensional interval scale. When relating pitch to frequency, a perceived tone can be associated to a frequency number. Comparing two tones can then be done by comparing the ratios of their frequencies, and we arrive at the well known harmonic relations of the octave (2:1), fifth (3:2), forth (4:3) etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arom, S.: African Polyphony and Polyrhythm: Musical Structure and Methodology. Cambridge University Press (1991)

    Google Scholar 

  2. Bader, R., Diezt, M.-K., Elvers, P., Elias, M., Tolkien, L.: Foundation of a Syllogistic Music Theory. In: Bader, R. (ed.) Musical Acoustics, Neurocognition and Psychology of Music, vol. 25, pp. 177–196. Hamburger Jahrbuch für Musikwissenschaft (2009)

    Google Scholar 

  3. Barnes, J. (ed.): The complete works of Aristotle. Princeton University Press (1984)

    Google Scholar 

  4. Bayes, T.: An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)

    Google Scholar 

  5. Besson, P., Richiardi, J., Bourdin, C., Bringoux, L., Mestre, D.R., Vercher, J.-L.: Bayesian networks and information theory for audio-visual perception modeling. Biological Cybernetics 103, 213–226 (2010)

    Article  Google Scholar 

  6. Beuermann, A., Schneider, A.: Struktur, Klang, Dynamik. Akustische Untersuchungen zu Ligetis Atmosphères [Structure, Timbre, Dynamics. Acoustical investigations of Ligetis Atmosphères]. Hamburger Jahrbuch für Musikwissenschaft 11, 311–334 (1991)

    Google Scholar 

  7. Bharucha, J.J.: Tonality and expectation. In: Aiello, R., Sloboda, J. (eds.) Musical Perceptions, pp. 213–239. Oxford University Press (1994)

    Google Scholar 

  8. Bharucha, J.J.: MUSACT: A connectionist model of musical harmony. In: Program of the Ninth Annual Conference of the Cognitive Science Society, Hillsdale, NJ, Erlbaum, pp. 508–517 (1987)

    Google Scholar 

  9. Bharucha, J.J.: Music cognition and perceptual facilitation: A connectionist framework. Music Perception 5, 1–30 (1987)

    Article  Google Scholar 

  10. Bharucha, J.J., Mencl, W.E.: Two issues in auditory cognition: Self-organization of octave categories and pitch-invariant pattern recognition. Psychological Science 7, 142–149 (1996)

    Article  Google Scholar 

  11. Bharucha, J.J., Todd, P.: Modeling the perception of tonal structures with neural nets. Computer Music Journal 13, 44–53 (1989)

    Article  Google Scholar 

  12. Bouliane, D.: Imaginäre Bewegung. György Ligetis Études pour piano [Imaginary movement. György Ligetis Études pour piano]. MusikTexte 28/29, 73–84 (1989)

    Google Scholar 

  13. Brentano, F.: Psychologie vom empirischen Standpunkt [Psychology from an empirical standpoint], Hamburg, Meiner (1955); original (1874)

    Google Scholar 

  14. Burde, W.: György Ligeti. Eine Monographie [A Monograph]. Atlantis Musikbuch (1993)

    Google Scholar 

  15. Butler, D., Brown, H.: Describing the mental representation of tonality in music. In: Aiello, R., Sloboda, J.A. (eds.) Musical Perceptions. Oxford University Press, NY (1994)

    Google Scholar 

  16. Cariani, P.: Temporal Coding of Periodicity Pitch in the Auditory System: An Overview. Neural Plasticity 6(4), 147–172 (1999)

    Article  Google Scholar 

  17. Carpenter, G.A., Grossberg, S.: ART 2: Self-organization of Stable Category Recognition Codes for Analog Input Patterns. Applied Optics 26, 4919–4930 (1987)

    Article  Google Scholar 

  18. Castellano, M.A., Bharucha, J.J., Krumhansl, C.L.: Tonal hierarchies in the music of North India. J. of Experimental Psychology: General 113, 394–412 (1984)

    Article  Google Scholar 

  19. Fétis, F.J.: Traité Complet de la Théorie et de la Pratique de l’Harmonie. Maurice Schlesinger, Paris (1844)

    Google Scholar 

  20. Foros, C.: György Ligeti. Jenseits von Avantgarde und Postmoderne [György Ligeti. Beyond the avantgarde and post modern]. Komponisten unserer Zeit. Bd. 26. Österreichische Musikzeit edition. Verlag Lafite, Wien (1996)

    Google Scholar 

  21. Gjerdingen, R.O.: Categorization of musical patterns by selforganizing neuronlike networks. Music Perception 8, 339–370 (1990)

    Article  Google Scholar 

  22. Goldstein, J.L.: An Optimum Processor Theory for the Central Formation of the Pitch of Compex Tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973)

    Article  Google Scholar 

  23. Goldstein, J.L., Gersen, A., Srulovicz, P., Furst, M.: Verification of the Opimal Probabilistic Basis of Aural Processing of Pitch of Complex Tones. J. Acoust. Soc. Am. 63, 486–497 (1978)

    Article  Google Scholar 

  24. Griffith, N.: Development of tonal centers and abstract pitch as categorizations of pitch use. Connection Science 6, 155–175 (1994)

    Article  Google Scholar 

  25. Grossberg, S.: Competitive learning: From interactive activation to adaptive resonance. Cognitive Science 11, 23–63 (1987)

    Article  Google Scholar 

  26. Grossberg, S.: Adaptive pattern classification and universal recording. I: Parallel development and coding of neural feature detectors. Biological Cybernitics 23, 121–134 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grossberg, S.: Adaptive pattern classification and universal recording II: Feedback, expectation, olfaction, and illusion. Biological Cybernitics 23, 187–202 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Hegel, G.W.F.: Wissenschaft der Logik [Science of Logic]. Felix Meiner Verlag, Hamburg (1999) (Original: 1813, 1832)

    Google Scholar 

  29. Hoppensteadt, F.C., Izhikevich, E.M.: Synaptic organizations and dynamical properties of weakly connected neural oscillators I: Analysis of a canonical model. Biological Cybernetics 75, 117–127 (1996)

    Article  MATH  Google Scholar 

  30. Hoppensteadt, F.C., Izhikevich, E.M.: Synaptic organizations and dynamical properties of weakly connected neural oscillators II: Learning phase information. Biological Cybernetics 75, 126–135 (1996)

    Google Scholar 

  31. Järvinen, T.: Tonal hierarchies in jazz improvisation. Music Perception 12, 415–437 (1995)

    Article  Google Scholar 

  32. Kessler, E.J., Hansen, C., Shepard, R.N.: Tonal schemata in the perception of music in Bali and the West. Music Perception 2, 131–165 (1984)

    Article  Google Scholar 

  33. Knopoff, L., Hutchinson, W.: Entropy as a measure of style: The influence of sample length. J. of Music Theory 27, 75–97 (1984)

    Article  Google Scholar 

  34. Kohonen, T.: Self-organizing maps. Springer, Berlin (1995)

    Book  Google Scholar 

  35. Krumhansl, C.L.: Cognitive foundations of musical pitch. Oxford University Press (1990)

    Google Scholar 

  36. Krumhansl, C.L., Louhivuori, J., Toivialnen, P., Järvinen, T., Eerola, T.: Melodic expectancy in Finnish spiritual hymns: Convergence of statistical, behavioral and computational approaches. Music Perception 17, 151–195 (1999)

    Article  Google Scholar 

  37. Kubik, G.: Die Amadinda Musik in Buganda [The amadinda music of Buganda]. In: Simon, A. (ed.) Musik in Afrika [Music in Africa], Berlin, pp. 139–156 (1983)

    Google Scholar 

  38. Laden, B., Keefe, D.H.: The representation of pitch in a neural net model of chord classification. In: Todd, P., Loy, G. (eds.) Music and Connectionism, pp. 64–83. MIT Press, Cambridge (1991)

    Google Scholar 

  39. Larson, S.: Analyzing Jazz: A Schenkerian Approach. Pandragon (2009)

    Google Scholar 

  40. Leman, M., Carreras, F.: Schema and Gestalt: Testing the hypothesis of Psychoneural Isomorphism by Computer Simulation. In: Leman, M. (ed.) JIC 1996. LNCS, vol. 1317, pp. 144–168. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  41. Leman, M.: Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology. Springer (1996)

    Google Scholar 

  42. Leman, M.: Music and schema theory. Springer, Berlin (1995)

    Book  Google Scholar 

  43. Lerdahl, F.: Tonal Pitch Space. Oxford University Press (2001)

    Google Scholar 

  44. Ligeti, G.: Booklettext of CD: György Ligeti Edition 3: Works for Piano (Études, Musica Ricercata). Pierre-Laurent Aimard (piano), Sony (1997)

    Google Scholar 

  45. Ligeti, G.: Musica ricercata per pianoforte (1951-1953). Score. Schott (1995)

    Google Scholar 

  46. Lipps, T.: Ästhetik: Psychologie des Schönen und der Kunst [Aesthetics: Psychology of the beautiful and the arts], Voss, Hamburg (1903)

    Google Scholar 

  47. Kurth, E.: Musikpsychologie [Music Psychology] (1931)

    Google Scholar 

  48. Müllensiefen, D.: Statistical techniques in music psychology: an update. In: Bader, R., Neuhaus, C., Morgenstern, U. (eds.) Concepts, Experiments, and Fieldwork: Studies in Systematic Musicology, pp. 193–216. Peter Lang, Frankfurt a.M. (2009)

    Google Scholar 

  49. Narmour, E.: Beyond Schenkerism. The need for alternatives in music analysis. University of Chicago Press (1977)

    Google Scholar 

  50. Page, M.A.: Modeling the perception of musical sequences with self-organizing neural networks. Connection Science 6, 223–246 (1994)

    Article  Google Scholar 

  51. Prince, A., Smolensky, P.: Optimality: From Neural Networks to Universal Grammar. Science 275(5306), 1604–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pathig, G., Barnes, J.: Aristotle’s Theory of Syllogism: A Logico-Philogical Study of Book A of the Prior Analytics. Springer (2010)

    Google Scholar 

  53. Prantl, C.: Geschichte der Logik im Abendlande Bd. 1, 1885, [History of Logic in the occident Vol. 1]. Nachdruck Wissenschaftliche Buchgesellschaft Darmstadt (1957)

    Google Scholar 

  54. Reich, S.: Foreword. In: Kebyar, G.G. (ed.) Michael Tenzer. The Art of 20th Century Balinese Music. University of Chicago Press, Chicago (2000)

    Google Scholar 

  55. Riemann, H.: Präludien und Studien: gesammelte Aufsätze zur Aesthetik, Theorie und Geschichte der Musik [Preludes and studies: collected papers on aesthetics, theory, and history of music] 1895 & 1900, Nendeln, Kraus (1976)

    Google Scholar 

  56. Riemann, H.: Katechismus der Musikästhetik. “Wie hören wir Musik?” [Catechism of Music Aestetics. “How do we hear music?”]. Hesse, Leipzig (1890)

    Google Scholar 

  57. Sano, H., Jenkins, B.K.: A neural network model for pitch perception. In: Todd, P., Loy, G. (eds.) Music and Connectionism, pp. 42–49. MIT Press, Cambridge (1991)

    Google Scholar 

  58. Shepard, R.N.: Circularity in Judgements of Relative Pitch. J. Acoust. Soc. Am. 36(12), 2346–2353 (1964)

    Article  Google Scholar 

  59. Stumpf, C.: Tonpsychologie. Bd.1/2 (1883/1890)

    Google Scholar 

  60. Taylor, I., Greenhough, M.: Modeling pitch perception with adaptive resonance theory artificial neural networks. Connection Science 6, 135–154 (1994)

    Article  Google Scholar 

  61. Temperley, D.: Music and Probability. MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  62. Terhardt, E., Stoll, G., Seewann, M.: Pitch of complex signals according to virtual-pitch theory - tests, examples, and predictions. J. Acoust. Soc. Am. 71, 671–628 (1982)

    Google Scholar 

  63. Terhardt, E.: Pitch, Consonance, and Harmony. J. Acoust. Soc. Am. 55, 1061–1069 (1974)

    Article  Google Scholar 

  64. Tillmann, B., Barucha, J.J., Bigand, E.: Implicit Learning of Tonality: A Self-Organizing Approach. Psychological Review 107(4), 885–913 (2000)

    Article  Google Scholar 

  65. Utz, C.: Gefrorene Turbulenz. Die Rezeption afrikanischer Musik in György Ligetis Klavierkonzert [Frozen turbulence. Reception of African music in György Ligetis piano concert]. Neue Zeitschrift für Musik 3, 36–43 (2003)

    Google Scholar 

  66. van Noorden, L.: Two channel pitch perception. In: Clynes, M. (ed.) Music, Mind, and Brain - the Neuropsychology of Music. Plenum Press, London (1982)

    Google Scholar 

  67. Wilson, P.N.: Interkulturelle Fantasien: György Ligetis Klavieretüden Nr. 7 und 8 [Intercultural fantasies: György Ligetis piano Études Nr. 7 and 8]. Melos: Jahrbuch für Zeigenössische Musik 51, 63–84 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Bader .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bader, R. (2013). Pitch, Melody, Tonality. In: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology. Current Research in Systematic Musicology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36098-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36098-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36097-8

  • Online ISBN: 978-3-642-36098-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics