On the Reusable Specification of Non-functional Properties in DSLs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7745)


Domain-specific languages (DSLs) are an important tool for effective system development. They provide concepts that are close to the problem domain and allow analysis as well as generation of full solution implementations. However, this comes at the cost of having to develop a new language for every new domain. To make their development efficient, we must be able to construct DSLs as much as possible from reusable building blocks. In this paper, we discuss how such building blocks can be constructed for the specification and analysis of a range of non-functional properties, such as, for example, throughput, response time, or reliability properties. We assume DSL semantics to be provided through a set of transformation rules, which enables a range of analyses based on model checking. We demonstrate new concepts for defining language modules for the specification of non-functional properties, show how these can be integrated with base DSL specifications, and provide a number of syntactic conditions that we prove maintain the semantics of the base DSL even in the presence of non-functional–property specifications.


Model Transformation Transformation Rule Graph Transformation Formal Framework Behavioural Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment of MDE in industry. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) Proc. 33rd Int’l Conf. on Software Engineering (ICSE 2011), pp. 471–480. ACM (2011)Google Scholar
  2. 2.
    Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model transformation: A case study in transformation modularity. Software and Systems Modelling 9(3), 375–402 (2010); Published on-line first at www.springerlink.comCrossRefGoogle Scholar
  3. 3.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Troya, J., Rivera, J.E., Vallecillo, A.: Simulating domain specific visual models by observation. In: Proc. 2010 Spring Simulation Multiconference (SpringSim 2010), pp. 128:1–128:8. ACM, New York (2010)Google Scholar
  5. 5.
    Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent behavior of DSLs. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2009, pp. 51–55. IEEE (2009)Google Scholar
  6. 6.
    Rivera, J.E., Durán, F., Vallecillo, A.: On the Behavioral Semantics of Real-Time Domain Specific Visual Languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 174–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Zschaler, S.: Formal specification of non-functional properties of component-based software systems: A semantic framework and some applications thereof. Software and Systems Modelling (SoSyM) 9, 161–201 (2009)CrossRefGoogle Scholar
  8. 8.
    Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A., Akşit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 106–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based system specifications (submitted for publication, 2012)Google Scholar
  10. 10.
    Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5, 369–385 (2006)CrossRefGoogle Scholar
  11. 11.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-Order Model Transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific (1997)Google Scholar
  13. 13.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application conditions: From graphs to high-level structures. Fundamenta Informaticae 74(1), 135–166 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2005)Google Scholar
  16. 16.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM ToPLaS 16(5), 1543–1571 (1994)CrossRefGoogle Scholar
  17. 17.
    Lack, S.: An embedding theorem for adhesive categories. Theory and Applications of Categories 25(7), 180–188 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Science of Computer Programming 72(1-2), 31–39 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Atenea: Reusable Specification of Observers (2012),
  20. 20.
    Frolund, S., Koistinen, J.: QML: A language for quality of service specification. Technical Report HPL-98-10, Hewlett-Packard Laboratories (1998)Google Scholar
  21. 21.
    Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems. PhD thesis, University of Oslo (2001)Google Scholar
  22. 22.
    Röttger, S., Zschaler, S.: CQML + : Enhancements to CQML. In: Bruel, J.M. (ed.) Proc. 1st Int’l Workshop on Quality of Service in Component-Based Software Engineering, pp. 43–56 (June 2003)Google Scholar
  23. 23.
    Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: Proc. 26th Int’l Conf. on Software Engineering (ICSE 2004), pp. 179–188. IEEE Computer Society (2004)Google Scholar
  24. 24.
    Bravenboer, M., Visser, E.: Concrete syntax for objects: Domain-specific language embedding and assimilation without restrictions. In: Proc. 19th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2004), pp. 365–383. ACM Press (2004)Google Scholar
  25. 25.
    Bravenboer, M., Visser, E.: Parse Table Composition Separate Compilation and Binary Extensibility of Grammars. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 74–94. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional development of domain specific languages. Int’l Journal on Software Tools for Technology Transfer (STTT) 12(5), 353–372 (2010)CrossRefGoogle Scholar
  27. 27.
    Wende, C., Thieme, N., Zschaler, S.: A Role-Based Approach towards Modular Language Engineering. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 254–273. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Carton, A., Driver, C., Jackson, A., Clarke, S.: Model-driven Theme/UML. Transactions on Aspect-Oriented Software Development (2008)Google Scholar
  29. 29.
    Kienzle, J., Abed, W.A., Klein, J.: Aspect-oriented multi-view modeling. In: Proc. 8th ACM Int’l Conf. on Aspect-Oriented Software Development (AOSD 2009), pp. 87–98. ACM (2009)Google Scholar
  30. 30.
    Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-Independent Model Modularisation. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on AOSD VI. LNCS, vol. 5560, pp. 39–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. symmetrically organized paradigms for software composition. Technical Report RC22685, IBM Research (2002)Google Scholar
  32. 32.
    Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N., Song, E., Georg, G.: Directives for Composing Aspect-Oriented Design Class Models. In: Rashid, A., Akşit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Kleppe, A.G.: 1st European workshop on composition of model transformations (CMT 2006). Technical Report TR-CTIT-06-34, Centre for Telematics and Information Technology, University of Twente (June 2006)Google Scholar
  34. 34.
    Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.M.: Reusable model transformations. Software and Systems Modeling (SoSyM), 1–15 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaSpain
  2. 2.Department of InformaticsKing’s College LondonUK

Personalised recommendations