A Review of Performance Variations in SMR-Based Brain−Computer Interfaces (BCIs)

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

The ability to operate a brain-computer interface (BCI) varies not only across subjects but also across time within each individual subject. In this article, we review recent progress in understanding the origins of such variations for BCIs based on the sensorimotor-rhythm (SMR). We propose a classification of studies according to four categories, and argue that an investigation of the neuro-physiological correlates of within-subject variations is likely to have a large impact on the design of future BCIs. We place a special emphasis on our own work on the neuro-physiological causes of performance variations, and argue that attentional networks in the gamma-range (\({>}40\) Hz) are likely to play a critical role in this context. We conclude the review with a discussion of outstanding problems.

References

  1. M. Ahn, H. Cho, S. Ahn, S. C. Jun, Performance predictor using the neuro-physiological factors of an ERD-based brain computer interface. Adv. Sci. Lett. (2012) (in press)Google Scholar
  2. B.Z. Allison, C. Neuper, in Could Anyone Use a BCI? ed. by D. S. Tan, A. Nijholt. Brain-Computer Interfaces, Human Computer Interaction Series (Springer, London, 2010), pp. 35–54Google Scholar
  3. A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Multi-class brain computer interface classification by riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2011)CrossRefGoogle Scholar
  4. Á. Barbero, M. Grosse-Wentrup, Biased feedback in brain-computer interfaces. J NeuroEng. Rehabil. 7(34), 1–4 (2010)Google Scholar
  5. N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, H. Flor, The thought translation device (TTD) for completely paralyzed patients. IEEE Trans. Rehabil. Eng. 8(2), 190–193 (2000)CrossRefGoogle Scholar
  6. B. Blankertz, G. Dornhege, M. Krauledat, K.R. Müller, G. Curio, The non-invasive berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 27(2), 539–550 (2007)CrossRefGoogle Scholar
  7. B. Blankertz, C. Sannelli, S. Halder, E.M. Hammer, A. Kübler, K.R. Müller, G. Curio, T. Dickhaus, Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010)CrossRefGoogle Scholar
  8. P. Brunner, S. Joshi, S. Briskin, J.R. Wolpaw, H. Bischof, G. Schalk, Does the’P300’speller depend on eye gaze? Journal of Neural Engineering 7, 056013 (2010)CrossRefGoogle Scholar
  9. R.T. Canolty, E. Edwards, S.S. Dalal, M. Soltani, S.S. Nagarajan, H.E. Kirsch, M.S. Berger, N.M. Barbaro, R.T. Knight, High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006)CrossRefGoogle Scholar
  10. M. Corbetta, G. Patel, G.L. Shulman, The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3), 306–324 (2008)CrossRefGoogle Scholar
  11. P. Eskandari, A. Erfanian, Improving the performance of brain-computer interface through meditation practicing. In 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2008), pages 662–665. IEEE, 2008Google Scholar
  12. M. Grosse-Wentrup, Neurofeedback of fronto-parietal gamma-oscillations, in Proceedings of the 5th International Brain-Computer Interface Conference, Verlag der Technischen Universität Graz, pp. 172–175 (2011).Google Scholar
  13. M. Grosse-Wentrup, The neural correlates of BCI performance variations in ALS: A pilot study. Front. Comput. Neurosci. 00117 (2011). doi://10.3389/conf.fncom.2011.53.00117.Google Scholar
  14. M. Grosse-Wentrup, M. Buss, Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans. Biomed. Eng. 55(8), 1991–2000 (2008)CrossRefGoogle Scholar
  15. M. Grosse-Wentrup, C. Liefhold, K. Gramann, M. Buss, Beamforming in non-invasive brain-computer interfaces. IEEE Trans. Biomed. Eng. 56(4), 1209–1219 (2009)CrossRefGoogle Scholar
  16. M. Grosse-Wentrup, B. Schölkopf, J. Hill, Causal influence of gamma oscillations on the sensorimotor rhythm. NeuroImage 56(2), 837–842 (2011)CrossRefGoogle Scholar
  17. M. Grosse-Wentrup, B. Schölkopf, High gamma-power predicts performance in sensorimotor-rhythm brain-computer interfaces. J. Neural Eng. 9(4), 046001 (2012)CrossRefGoogle Scholar
  18. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, G. Pfurtscheller, How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)CrossRefGoogle Scholar
  19. C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica, G. Edlinger, How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci. Lett. 462(1), 94–98 (2009)CrossRefGoogle Scholar
  20. S. Halder, D. Agorastos, R. Veit, E.M. Hammer, S. Lee, B. Varkuti, M. Bogdan, W. Rosenstiel, N. Birbaumer, A. Kübler, Neural mechanisms of brain-computer interface control. NeuroImage 55(4), 1779–1790 (2011)CrossRefGoogle Scholar
  21. E.M. Hammer, S. Halder, B. Blankertz, C. Sannelli, T. Dickhaus, S. Kleih, K.R. Müller, A. Kübler, Psychological predictors of SMR-BCI performance. Biol. Psychol. 89(1), 80–86 (2011)CrossRefGoogle Scholar
  22. N.J. Hill, B. Schölkopf, An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. J. Neural Eng. 9, 026011 (2012)CrossRefGoogle Scholar
  23. J.J.M. Kew, P.N. Leigh, E.D. Playford, R.E. Passingham, L.H. Goldstein, R.S.J. Frackowiak, D.J. Brooks, Cortical function in amyotrophic lateral sclerosis. Brain 116(3), 655–680 (1993)CrossRefGoogle Scholar
  24. A.L. Ko, F. Darvas, A. Poliakov, J. Ojemann, L.B. Sorensen, Quasi-periodic fluctuations in default mode network electrophysiology. J. Neurosci. 31(32), 11728 (2011)CrossRefGoogle Scholar
  25. A. Kübler, F. Nijboer, J. Mellinger, T.M. Vaughan, H. Pawelzik, G. Schalk, D.J. McFarland, N. Birbaumer, J.R. Wolpaw, Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10), 1775–1777 (2005)CrossRefGoogle Scholar
  26. A. Kübler, A. Furdea, S. Halder, E.M. Hammer, F. Nijboer, B. Kotchoubey, A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009)CrossRefGoogle Scholar
  27. C.E. Lakey, D.R. Berry, E.W. Sellers, Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance. J. Neural Eng. 8, 025019 (2011)CrossRefGoogle Scholar
  28. T.N. Lal, M. Schroder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, B. Schölkopf, Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51(6), 1003–1010 (2004)CrossRefGoogle Scholar
  29. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, R1 (2007)CrossRefGoogle Scholar
  30. B. Mahmoudi, A. Erfanian, Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Med. Biol. Eng. Comput. 44(11), 959–969 (2006)CrossRefGoogle Scholar
  31. J.N. Mak, D.J. McFarland, T.M. Vaughan, L.M. McCane, P.Z. Tsui, D.J. Zeitlin, E.W. Sellers, J.R. Wolpaw, EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis. J. Neural Eng. 9, 026014 (2012)CrossRefGoogle Scholar
  32. S.G. Mason, A. Bashashati, M. Fatourechi, K.F. Navarro, G.E. Birch, A comprehensive survey of brain interface technology designs. Ann. Biomed. Eng. 35(2), 137–169 (2007)CrossRefGoogle Scholar
  33. F. Nijboer, N. Birbaumer, A. Kübler, The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis—a longitudinal study. Front. Neurosci. 4, 55 (2010)Google Scholar
  34. J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, London, 2000)MATHGoogle Scholar
  35. G. Pfurtscheller, C. Neuper, Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)CrossRefGoogle Scholar
  36. J.D. Ramsey, S.J. Hanson, C. Hanson, Y.O. Halchenko, R.A. Poldrack, C. Glymour, Six problems for causal inference from fMRI. Neuroimage 49(2), 1545–1558 (2010)CrossRefGoogle Scholar
  37. W. Samek, C. Vidaurre, K.R. Müller, M. Kawanabe, Stationary common spatial patterns for brain-computer interfacing. J Neural Eng. 9, 026013 (2012)CrossRefGoogle Scholar
  38. P. Shenoy, M. Krauledat, B. Blankertz, R.P.N. Rao, K.R. Müller, Towards adaptive classification for BCI. J. Neural Eng. 3, R13 (2006)CrossRefGoogle Scholar
  39. P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search (MIT Press, Cambridge, 2000)Google Scholar
  40. M. Sugiyama, M. Krauledat, K.R. Müller, Covariate shift adaptation by importance weighted cross validation. J. Mach. Learn. Res. 8, 985–1005 (2007)MATHGoogle Scholar
  41. P. Sykacek, S.J. Roberts, M. Stokes, Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans. Biomed. Eng. 51(5), 719–727 (2004)CrossRefGoogle Scholar
  42. B. Varkuti, S.Halder, M. Bogdan, A. Kübler, W. Rosenstiel, R. Sitaram, N. Birbaumer. in SMR EEG-BCI aptitude in healthy subjects varies with the integrity of corpus callosum white matter, ed. by G.R. Müller-Putz, R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, and C. Neuper Proceedings of the 5th International BCI Conference 2011 pages 104–107Google Scholar
  43. J.J. Vidal, Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)CrossRefGoogle Scholar
  44. C. Vidaurre, A. Schlogl, R. Cabeza, R. Scherer, G. Pfurtscheller, A fully on-line adaptive BCI. IEEE Trans. Biomed. Eng. 53(6), 1214–1219 (2006)CrossRefGoogle Scholar
  45. J.R. Wolpaw, D.J. McFarland, Multichannel EEG-based brain-computer communication. Electroencephalogr. Clin. Neurophysiol. 90(6), 444–449 (1994)CrossRefGoogle Scholar
  46. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clini. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  47. J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Nat. Acad. Sci. U.S.A. 101(51), 17849 (2004)CrossRefGoogle Scholar
  48. T.O. Zander, C. Kothe, Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J. Neural Eng. 8, 025005 (2011)CrossRefGoogle Scholar
  49. H. Zhang, Z.Y. Chin, K.K. Ang, C. Guan, C. Wang, Optimum spatio-spectral filtering network for brain-computer interface. IEEE Trans. Neural Netw. 22(1), 52–63 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department Empirical InferenceMax Planck Institute for Intelligent SystemsTübingenGermany

Personalised recommendations