What’s Your Next Move? Detecting Movement Intention for Stroke Rehabilitation

  • R. Zimmermann
  • L. Marchal-Crespo
  • O. Lambercy
  • M. -C. Fluet
  • J. -C. Metzger
  • J. Edelmann
  • J. Brand
  • K. Eng
  • R. Riener
  • M. Wolf
  • R. Gassert
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

BCIs have recently been identified as a method to promote restorative neuroplastic changes in patients with severe motor impairment, such as after a stroke. In this chapter, we describe a novel therapeutic strategy for hand rehabilitation making use of this method. The approach consists of recording brain activity in cortical motor areas by means of near-infrared spectroscopy, and complementing the cortical signals with physiological data acquired simultaneously. By combining these signals, we aim at detecting the intention to move using a multi-modal classification algorithm. The classifier output then triggers assistance from a robotic device, in order to execute the movement and provide sensory stimulation at the level of the hand as response to the detected motor intention. Furthermore, the cortical data can be used to control audiovisual feedback, which provides a context and a motivating training environment. It is expected that closing the sensorimotor loop with such a brain-body-robot interface will promote neuroplasticity in sensorimotor networks and support the recovery process.

References

  1. V.L. Roger et al., Heart disease and stroke statistics–2011 update. Circulation 123, e18–e209 (2011)CrossRefGoogle Scholar
  2. A. Pollock, G.D. Baer, P. Langhorne, V.M. Pomeroy, Physiotherapy treatment approaches for stroke. Stroke 39, 519–520 (2008)CrossRefGoogle Scholar
  3. C.D. Takahashi, L. Der-Yeghiaian, L. Vu, R.R. Motiwala, S.C. Cramer, Robot-based hand motor therapy after stroke. Brain 131, 425–437 (2008)CrossRefGoogle Scholar
  4. O. Lambercy, L. Dovat, H. Yun, S.K. Wee, C. Kuah, K. Chua, R. Gassert, T. Milner, C.L. Teo, E. Burdet, Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J. NeuroEng. Rehabil 8, 63 (2011)Google Scholar
  5. N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehabil. Res. Dev. 43, 605–618 (2006)CrossRefGoogle Scholar
  6. E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer, Think to move: a neuromagnetic brain–computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)CrossRefGoogle Scholar
  7. T.E. Ward, C.J. Soraghan, F. Matthews, C. Markham, A concept for extending the applicability of constraint-induced movement therapy through motor cortex activity feedback using a neural prosthesis. Comput. Intell. Neurosci. 51363, 1–9 (2007)Google Scholar
  8. S.C. Cramer et al., Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609 (2011)CrossRefGoogle Scholar
  9. W. Wang, J.L. Collinger, M.A. Perez, E.C. Tyler-Kabara, L.G. Cohen, N. Birbaumer, S.W. Brose, A.B. Schwartz, M.L. Boninger, D.J. Weber, Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 21, 157–178 (2010)MATHCrossRefGoogle Scholar
  10. M. Wolf, M. Ferrari, V. Quaresima, Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 12, 062104 (2007)CrossRefGoogle Scholar
  11. T. Muehlemann, D. Haensse, M. Wolf, Wireless miniaturized in vivo near infrared imaging. Opt. Express 16, 10323–10330 (2008)CrossRefGoogle Scholar
  12. B.N. Pasley, R.D. Freeman, Neurovascular coupling. Scholarpedia 3, 5340 (2008)CrossRefGoogle Scholar
  13. S. Coyle, T. Ward, C. Markham, G. McDarby, On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25, 815–822 (2004)CrossRefGoogle Scholar
  14. R. Sitaram, Y. Hoshi, C. Guan, Near infrared spectroscopy based brain–computer interface, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5852, pp. 434–442 (2005)Google Scholar
  15. X. Cui, S. Bray, A.L. Reiss, Speeded near infrared spectroscopy (NIRS) response detection. PLoS One 5, e15474 (2010)Google Scholar
  16. R. Sitaram, H. Zhang, C. Guan, M. Thulasidis, Y. Hoshi, A. Ishikawa, K. Shimizu, N. Birbaumer, Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34, 1416–1427 (2007)CrossRefGoogle Scholar
  17. S.M. Coyle, T.E. Ward, C.M. Markham, Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219–226 (2007)CrossRefGoogle Scholar
  18. L. Holper, M. Wolf, Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study. J. NeuroEng. Rehabil. 8, 34 (2011)CrossRefGoogle Scholar
  19. M. Naito, Y. Michioka, K. Ozawa, Y. Ito, M. Kiguchi, T. Kanazawa, A communication mean for totally locked-in als patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans. Inf. Syst. E90-D, 1028–1037 (2007)Google Scholar
  20. S.D. Power, T.H. Falk, T. Chau, Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng. 7, 026002 (2010)CrossRefGoogle Scholar
  21. T. Falk, M. Guirgis, S. Power, T. Chau, Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 136–146 (2011)CrossRefGoogle Scholar
  22. S. Luu, T. Chau, Decoding subjective preference from single-trial near-infrared spectroscopy signals. J. Neural Eng. 6, 016003 (2009)CrossRefGoogle Scholar
  23. K. Tai, T. Chau, Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface. J. Neuroeng. Rehabil. 6, 39 (2009)CrossRefGoogle Scholar
  24. R. Zimmermann, L. Marchal-Crespo, O. Lambercy, M.C. Fluet, R. Riener, M. Wolf, R. Gassert, Towards a BCI for sensorimotor training: initial results from simultaneous fNIRS and biosignal recordings, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011 (EMBC 2011), pp. 6339–6343 (2011)Google Scholar
  25. R. Zimmermann, L. Marchal-Crespo, J. Edelmann, O. Lambercy, M.C. Fluet, R. Riener, M. Wolf, R. Gassert, Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study. J. NeuroEng. Rehabil. 10, 4 (2013)Google Scholar
  26. J.C. Metzger, O. Lambercy, D. Chapuis, R. Gassert, Design and characterization of the ReHapticKnob, a robot for assessment and therapy of hand function, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, 25–30 Sept 2011, pp. 3074–3080 (2011)Google Scholar
  27. J.C. Metzger, O. Lambercy, R. Gassert, High-Fidelity rendering of virtual objects with the ReHapticKnob—Novel avenues in robot-assisted rehabilitation of hand function, in IEEE Haptics Symposium, 4–7 March 2012, pp. 51–56 (2012)Google Scholar
  28. A.S. Merians, D. Jack, R. Boian, M. Tremaine, G.C. Burdea, S.V. Adamovich, M. Recce, H. Poizner, Virtual reality-augmented rehabilitation for patients following stroke. Phys. Ther. 82, 898–915 (2002)Google Scholar
  29. L. Holper, T. Muehlemann, F. Scholkmann, K. Eng, D. Kiper, M. Wolf, Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). J. NeuroEng. Rehabil. 7, 57 (2010)CrossRefGoogle Scholar
  30. J. Brand, O. Geisseler, L. Holper, M.C. Hepp-Reymond, M. Morari, D. Kiper, K. Eng, The effects of manipulation of visual feedback in virtual reality on cortical activity: a pilot study, in 2011 International Conference on Virtual Rehabilitation (ICVR), 27–29 June 2011, pp. 1–2 (2011)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • R. Zimmermann
    • 1
    • 4
  • L. Marchal-Crespo
    • 2
    • 3
  • O. Lambercy
    • 1
  • M. -C. Fluet
    • 1
  • J. -C. Metzger
    • 1
  • J. Edelmann
    • 1
  • J. Brand
    • 5
  • K. Eng
    • 5
  • R. Riener
    • 2
    • 3
  • M. Wolf
    • 4
  • R. Gassert
    • 1
  1. 1.Rehabilitation Engineering LabETH ZurichZurichSwitzerland
  2. 2.Sensory-Motor Systems LabETH ZurichZurichSwitzerland
  3. 3.Balgrist University Hospital, University of ZurichZurichSwitzerland
  4. 4.Biomedical Optics Research LabUniversity Hospital ZurichZurichSwitzerland
  5. 5.Institute of NeuroinformaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations