User-Appropriate and Robust Control Strategies to Enhance Brain−Computer Interface Performance and Usability

  • E. V. C. Friedrich
  • R. Scherer
  • C. Neuper
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


This project aimed to enhance performance and usability of mental imagery-based BCIs by evaluating (1) user-appropriate and robust control strategies, (2) whether mental imagery-based BCIs are robust and stable enough for real-world applications and (3) user-comfort in able-bodied and disabled individuals. Three studies were conducted to address these issues. The results showed that alternatives to motor imagery can provide a great benefit especially to severely motor impaired users. Individually chosen control strategies from a broad range of reliable and stable mental tasks can improve BCI usability and performance substantially. Furthermore, participants could operate the BCI while simultaneously perceiving or reacting to deviant auditory stimuli and could attain stable long-time BCI control despite longer breaks without any BCI use. This project paid special attention to practical issues and helped to pave the way out of the laboratory into real-world application for mental imagery-based BCIs.


  1. B.Z. Allison, C. Neuper, Could anyone use a BCI?, in: Applying our minds to human-computer interaction, brain-computer interfaces, human-computer interaction series, ed. by D.S. Tan, A. Nijholt, (Springer Verlag, London, 2010) pp. 35–54Google Scholar
  2. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, G. Curio, The non-invasive Berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 37, 539–550 (2007)CrossRefGoogle Scholar
  3. E. Curran, M. Stokes, Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn. 51, 326–336 (2003)CrossRefGoogle Scholar
  4. R.O. Duda, P.E. Hard, D.G. Stork, Pattern classification, 2nd ed. (John Wiley, New York, 2001)Google Scholar
  5. E.V.C. Friedrich, R. Scherer, K. Sonnleitner, C. Neuper, Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks. Clin. Neurophysiol. 122, 2003–2009 (2011a)Google Scholar
  6. E.V.C. Friedrich, R. Scherer, J. Faller, C. Neuper, Do user-related factors of motor impaired and able-bodied participants correlate with classification accuracy?, in: Proceedings of the 5th International Brain-Computer Interface Conference 2011, ed. by G.R. Müller-Putz, R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper (2011b) pp. 156–159Google Scholar
  7. E.V.C. Friedrich, R. Scherer, C. Neuper, The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 84, 86–94 (2012)CrossRefGoogle Scholar
  8. E.V.C. Friedrich, R. Scherer, C. Neuper, Stability of event-related (de-) synchronization during brain-computer interface-relevant mental tasks. Clin. Neurophysiol. 124, 61–69 (2013)CrossRefGoogle Scholar
  9. E.V.C Friedrich, R. Scherer, C. Neuper. Long-term evaluation of a 4-class imagery-based brain-computer interface. Clin. Neurophysiol. (in press)Google Scholar
  10. S.C. Kleih, A. Riccio, D. Mattia, V. Kaiser, E.V.C. Friedrich, R. Scherer, G. Müller-Putz, C. Neuper, A. Kübler, Motivation influences performance in SMR-BCI, in: Proceedings of the 5th International Brain-Computer Interface Conference 2011, ed. by G.R. Müller-Putz, R. Scherer, M. Billinger, A. Kreilinger, V. Kaiser, C. Neuper (2011) pp. 108–111Google Scholar
  11. A. Kübler, B. Kotchoubey, J. Kaiser, J.R. Wolpaw, N. Birbaumer, Brain-computer communication: Unlocking the locked in. Psychol. Bull. 127, 358–375 (2001)CrossRefGoogle Scholar
  12. A. Kübler, F. Nijboer, J. Mellinger, T.M. Vaughan, H. Pawelzik, G. Schalk, D.J. McFarland, N. Birbaumer, J.R. Wolpaw, Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64, 1775–1777 (2005)CrossRefGoogle Scholar
  13. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7, 1–9 (2010)CrossRefGoogle Scholar
  14. J.d.R. Millán, F. Renkens, J. Mouriño, W.Gerstner, Brain-actuated interaction. Artif. Intell. 159, 241–259 (2004)Google Scholar
  15. J. Müller-Gerking, G. Pfurtscheller, H. Flyvbjerg, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–798 (1999)CrossRefGoogle Scholar
  16. C. Neuper, R. Scherer, S. Wriessnegger, G. Pfurtscheller, Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120, 239–247 (2009)CrossRefGoogle Scholar
  17. F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D.J. McFarland, N. Birbaumer, A. Kübler, An auditory brain-computer interface (BCI). J. Neurosci. Methods 167, 43–50 (2008)CrossRefGoogle Scholar
  18. G. Pfurtscheller, C. Brunner, A. Schlögl, F.H. Lopes da Silva, Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)CrossRefGoogle Scholar
  19. H. Ramoser, J. Müller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8, 441–446 (2000)CrossRefGoogle Scholar
  20. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)CrossRefGoogle Scholar
  21. C. Zickler, V. Di Donna, V. Kaiser, A. Al-Khodairy, S. Kleih, A. Kübler, M. Malavasi, D. Mattia, S. Mongardi, C. Neuper, M. Rohm, R. Rupp, P. Staiger-Sälzer, E.-J. Hoogerwerf, BCI applications for people with disabilities: defining user needs and user requirements, in Assistive technology from adapted equipment to inclusive environments, AAATE 2009, ed. by P.L. Emiliani, L. Burzagli, A. Como, F. Gabbanini, A.-L. Salminen. in Proceedings of the 10th European conference of the association for the advancement of assistive technology in Europe (2009) pp. 185–189Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GrazGrazAustria
  2. 2.Institute for Knowledge Discovery, Laboratory of Brain-Computer InterfacesGraz University of TechnologyGrazAustria

Personalised recommendations