Skip to main content

Self-Assembled DNA-Inorganic Nanoparticle Structures

  • 3516 Accesses

Abstract

In this chaper, we decribe the structures of DNA-based assembly of inorganic nanoparticle in one, two, and three dimensions. Smart DNA linker, DNA motifs, and DNA origami were introduced to assembled nanoparticle, respectively. We also show our insights for the application of DNA-inorganic nanoparticle structures in the future.

Keywords

  • DNA motifs
  • DNA origami
  • Self-assembly
  • Nanoparticle

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36077-0_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36077-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7

References

  1. Simon U (1998) Charge transport in nanoparticle arrangements. Adv Mater 10(17):1487–1492. doi:10.1002/(sici)1521-4095(199812)10:17<1487::aid-adma1487>3.0.co;2-w

    CrossRef  CAS  Google Scholar 

  2. Markovich G, Collier CP, Heath JR (1998) Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys Rev Lett 80(17):3807–3810. doi:10.1103/PhysRevLett.80.3807

    CrossRef  CAS  Google Scholar 

  3. Schmid G, Bäumle M, Beyer N (2000) Ordered two-dimensional monolayers of Au55 clusters. Angew Chem Int Ed 39(1):181–183. doi:10.1002/(sici)1521-3773(2103)39:1<181::aid-anie181>3.0.co;2-j

    CrossRef  CAS  Google Scholar 

  4. Liu ST, Maoz R, Schmid G, Sagiv J (2002) Template guided self-assembly of [Au5(5)] clusters on nanolithographically defined monolayer patterns. Nano Lett 2(10):1055–1060. doi:10.1021/nl025659c

    CrossRef  CAS  Google Scholar 

  5. Wilkins MHF, Stokes AR, Wilson HR (1953) Molecular structure of deoxypentose nucleic acids. Nature 171(4356):738–740. doi:10.1038/171738a0

    CrossRef  CAS  Google Scholar 

  6. Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99(2):237–247. doi:10.1016/0022-5193(82)9-9

    CrossRef  CAS  Google Scholar 

  7. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    CrossRef  CAS  Google Scholar 

  8. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592):609–611

    CrossRef  CAS  Google Scholar 

  9. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302. doi:10.1038/nature04586

    CrossRef  CAS  Google Scholar 

  10. Loweth CJ, Caldwell WB, Peng XG, Alivisatos AP, Schultz PG (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 38(12):1808–1812. doi:10.1002/(sici)1521-3773(19990614)38:12<1808::aid-anie1808>3.3.co;2-3

    CrossRef  CAS  Google Scholar 

  11. Bidault S, de Abajo FJG, Polman A (2008) Plasmon-based nanolenses assembled on a well-defined DNA template. J Am Chem Soc 130(9):2750–2751. doi:10.1021/ja711074n

    CrossRef  CAS  Google Scholar 

  12. Pal S, Deng Z, Ding B, Yan H, Liu Y (2010) DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. Angew Chem Int Ed 49(15):2700–2704. doi:10.1002/anie.20130

    CrossRef  CAS  Google Scholar 

  13. Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J (2010) Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 132(10):3248–3249. doi:10.1021/ja9101198

    CrossRef  CAS  Google Scholar 

  14. Ohya Y, Miyoshi N, Hashizume M, Tamaki T, Uehara T, Shingubara S, Kuzuya A (2012) Formation of 1D and 2D gold nanoparticle arrays by divalent DNA-gold nanoparticle conjugates. Small 8(15):2335–2340

    CrossRef  CAS  Google Scholar 

  15. Zhang T, Dong Y, Sun Y, Chen P, Yang Y, Zhou C, Xu L, Yang Z, Liu D (2012) DNA bimodified gold nanoparticles. Langmuir 28(4):1966–1970. doi:10.1021/la203151b

    CrossRef  CAS  Google Scholar 

  16. Deng Z, Tian Y, Lee S-H, Ribbe AE, Mao C (2005) DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 117(23):3648–3651. doi:10.1002/ange.200463096

    CrossRef  Google Scholar 

  17. Lo PK, Altvater F, Sleiman HF (2010) Templated synthesis of DNA nanotubes with controlled, predetermined lengths. J Am Chem Soc 132(30):10212–10214. doi:10.1021/ja1017442

    CrossRef  CAS  Google Scholar 

  18. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884. doi:10.1126/science.1089389

    CrossRef  CAS  Google Scholar 

  19. Schreiber R, Kempter S, Holler S, Schueller V, Schiffels D, Simmel SS, Nickels PC, Liedl T (2011) DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 7(13):1795–1799. doi:10.1002/smll.201100465

    CrossRef  CAS  Google Scholar 

  20. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120(48):12674–12675. doi:10.1021/ja982721s

    CrossRef  CAS  Google Scholar 

  21. Wen Y, McLaughlin CK, Lo PK, Yang H, Sleiman HF (2010) Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies. Bioconjug Chem 21(8):1413–1416. doi:10.1021/bc100160k

    CrossRef  CAS  Google Scholar 

  22. Fan JA, He Y, Bao K, Wu C, Bao J, Schade NB, Manoharan VN, Shvets G, Nordlander P, Liu DR, Capasso F (2011) DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett 11(11):4859–4864. doi:10.1021/nl203194m

    CrossRef  CAS  Google Scholar 

  23. Cassell AM, Scrivens WA, Tour JM (1998) Assembly of DNA/fullerene hybrid materials. Angew Chem Int Ed 37(11):1528–1531. doi:10.1002/(sici)1521-3773(19980619)37:11<1528::aid-anie1528>3.0.co;2-q

    CrossRef  CAS  Google Scholar 

  24. Dujardin E, Hsin LB, Wang CRC, Mann S (2001) DNA-driven self-assembly of gold nanorods. Chem Commun 14:1264–1265. doi:10.1039/b102319p

    CrossRef  Google Scholar 

  25. Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134(7):3322–3325. doi:10.1021/ja209981n

    CrossRef  CAS  Google Scholar 

  26. Li SN, He PG, Dong JH, Guo ZX, Dai LM (2005) DNA-directed self-assembling of carbon nanotubes. J Am Chem Soc 127(1):14–15. doi:10.1021/ja0446045

    CrossRef  CAS  Google Scholar 

  27. Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126(35):10832–10833. doi:10.1021/ja04647x

    CrossRef  CAS  Google Scholar 

  28. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6(8):485–490. doi:10.1038/nnano.2011.100

    CrossRef  CAS  Google Scholar 

  29. Winfree E, Liu FR, Wenzler LA, Seeman NC (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693):539–544. doi:10.1038/28998

    CrossRef  CAS  Google Scholar 

  30. Liu FR, Sha RJ, Seeman NC (1999) Modifying the surface features of two-dimensional DNA crystals. J Am Chem Soc 121(5):917–922. doi:10.1021/ja982824a

    CrossRef  CAS  Google Scholar 

  31. Reishus D, Shaw B, Brun Y, Chelyapov N, Adleman L (2005) Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. J Am Chem Soc 127(50):17590–17591. doi:10.1021/ja0557177

    CrossRef  CAS  Google Scholar 

  32. LaBean TH, Yan H, Kopatsch J, Liu FR, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860. doi:10.1021/ja993393e

    CrossRef  CAS  Google Scholar 

  33. Yan H, Zhang XP, Shen ZY, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65. doi:10.1038/415062a

    CrossRef  CAS  Google Scholar 

  34. Shen ZY, Yan H, Wang T, Seeman NC (2004) Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. J Am Chem Soc 126(6):1666–1674. doi:10.1021/ja038381e

    CrossRef  CAS  Google Scholar 

  35. Xiao SJ, Liu FR, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (2002) Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanopart Res 4(4):313–317. doi:10.1023/a:1021145208328

    CrossRef  CAS  Google Scholar 

  36. Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2004) DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4(12):2343–2347. doi:10.1021/nl048635+

    CrossRef  CAS  Google Scholar 

  37. Pinto YY, Le JD, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA (2005) Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Lett 5(12):2399–2402. doi:10.1021/nl0515495

    CrossRef  CAS  Google Scholar 

  38. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (2006) Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett 6(7):1502–1504. doi:10.1021/nl060994c

    CrossRef  CAS  Google Scholar 

  39. Zhang JP, Liu Y, Ke YG, Yan H (2006) Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Lett 6(2):248–251. doi:10.1021/nl052210l

    CrossRef  CAS  Google Scholar 

  40. Sharma J, Chhabra R, Liu Y, Ke YG, Yan H (2006) DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 45(5):730–735. doi:10.1002/anie.200503208

    CrossRef  CAS  Google Scholar 

  41. Sharma J, Ke Y, Lin C, Chhabra R, Wang Q, Nangreave J, Liu Y, Yan H (2008) DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. Angew Chem Int Ed 47(28):5157–5159. doi:10.1002/anie.200801485

    CrossRef  CAS  Google Scholar 

  42. Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821. doi:10.1021/ja802853r

    CrossRef  CAS  Google Scholar 

  43. Endo M, Yang Y, Emura T, Hidaka K, Sugiyama H (2011) Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold. Chem Commun 47(38):10743–10745. doi:10.1039/c1cc13984c

    CrossRef  CAS  Google Scholar 

  44. Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126. doi:10.1038/nnano.2009.450

    CrossRef  CAS  Google Scholar 

  45. Pal S, Varghese R, Deng Z, Zhao Z, Kumar A, Yan H, Liu Y (2011) Site-specific synthesis and in situ immobilization of fluorescent silver nanoclusters on DNA nanoscaffolds by use of the Tollens reaction. Angew Chem Int Ed 50(18):4176–4179. doi:10.1002/anie.201007529

    CrossRef  CAS  Google Scholar 

  46. Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H (2011) DNA directed self-assembly of anisotropic plasmonic nanostructures. J Am Chem Soc 133(44):17606–17609. doi:10.1021/ja207898r

    CrossRef  CAS  Google Scholar 

  47. Maune HT, S-p H, Barish RD, Bockrath M, Goddard WA III, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66. doi:10.1038/nnano.2009.311

    CrossRef  CAS  Google Scholar 

  48. Ko SH, Gallatin GM, Liddle JA (2012) Nanomanufacturing with DNA origami: factors affecting the kinetics and yield of quantum dot binding. Adv Funct Mater 22(5):1015–1023. doi:10.1002/adfm.201102077

    CrossRef  CAS  Google Scholar 

  49. Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131(24):8455–8459. doi:10.1021/ja808570g

    CrossRef  CAS  Google Scholar 

  50. Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128(29):9286–9287. doi:10.1021/ja061980b

    CrossRef  CAS  Google Scholar 

  51. Xing H, Wang Z, Xu Z, Wong NY, Xiang Y, Liu GL, Lu Y (2012) DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 6(1):802–809. doi:10.1021/nn2042797

    CrossRef  CAS  Google Scholar 

  52. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E-M, Hoegele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483(7389):311–314. doi:10.1038/nature10889

    CrossRef  CAS  Google Scholar 

  53. Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134(1):146–149. doi:10.1021/ja209861x

    CrossRef  CAS  Google Scholar 

  54. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323(5910):112–116. doi:10.1126/science.1165831

    CrossRef  CAS  Google Scholar 

  55. Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50(9):2041–2044. doi:10.1002/anie.201006818

    CrossRef  CAS  Google Scholar 

  56. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451(7178):553–556. doi:10.1038/nature06508

    CrossRef  CAS  Google Scholar 

  57. Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451(7178):549–552. doi:10.1038/nature06560

    CrossRef  CAS  Google Scholar 

  58. Xiong H, van der Lelie D, Gang O (2008) DNA linker-mediated crystallization of nanocolloids. J Am Chem Soc 130(8):2442–2443. doi:10.1021/ja710710j

    CrossRef  CAS  Google Scholar 

  59. Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O (2010) Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 5(2):116–120. doi:10.1038/nnano.2009.378

    CrossRef  CAS  Google Scholar 

  60. Auyeung E, Cutler JI, Macfarlane RJ, Jones MR, Wu J, Liu G, Zhang K, Osberg KD, Mirkin CA (2012) Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat Nanotechnol 7(1):24–28. doi:10.1038/nnano.2011.222

    CrossRef  CAS  Google Scholar 

  61. Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Mirkin CA (2010) DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 9(11):913–917. doi:10.1038/nmat2870

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Z., Lan, X., Wang, Q. (2013). Self-Assembled DNA-Inorganic Nanoparticle Structures. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_9

Download citation