Skip to main content

Functional Nucleic Acids for DNA Nanotechnology

  • 3508 Accesses

Abstract

Today, DNA emerged as a fundamental and intelligent molecule to assist construction and functionalization of nanodevices in the field of nanotechnology. Besides the powerful base-pair molecular recognition property utilized to control the final structure and function of materials, the ligand-binding capability and catalytic property offered by a large number of functional nucleic acids have stimulated the enthusiasm and creativity for molecular scientists from various disciplines to construct more intelligent DNA nanostructures and nanodevices. If the double helix is the core of DNA nanotechnology, functional nucleic acids are the active surfaces which take the role of interacting with peripheral environments. In this chapter, concept and basic property of functional nucleic acids are introduced, followed by a review of the application of functional nucleic acids in DNA nanotechnology.

Keywords

  • Functional nucleic acid
  • DNA nanotechnology
  • DNA aptamers
  • DNAzymes
  • DNA origami
  • Biosensing
  • Drug delivery
  • DNA nanodevices

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36077-0_2
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36077-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10

References

  1. Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99(2):237–247

    CrossRef  CAS  Google Scholar 

  2. Seeman NC (1991) Construction of 3-dimensional stick figures from branched DNA. DNA Cell Biol 10(7):475–486

    CrossRef  CAS  Google Scholar 

  3. Zhang YW, Seeman NC (1992) A solid-support methodology for the construction of geometrical objects from DNA. J Am Chem Soc 114(7):2656–2663

    CrossRef  CAS  Google Scholar 

  4. Zhang YW, Seeman NC (1994) Construction of a DNA-truncated octahedron. J Am Chem Soc 116(5):1661–1669

    CrossRef  CAS  Google Scholar 

  5. Churchill ME, Tullius TD, Kallenbach NR, Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci U S A 85(13):4653–4656

    CrossRef  CAS  Google Scholar 

  6. Lilley DM, Clegg RM (1993) The structure of the four-way junction in DNA. Annu Rev Biophys Biomol Struct 22:299–328. doi:10.1146/annurev.bb.22.060193.001503

    CrossRef  CAS  Google Scholar 

  7. Li XJ, Yang XP, Qi J, Seeman NC (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 118(26):6131–6140

    CrossRef  CAS  Google Scholar 

  8. Seeman NC (2003) Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry 42(24):7259–7269. doi:10.1021/bi030079v

    CrossRef  CAS  Google Scholar 

  9. Zhang XP, Yan H, Shen ZY, Seeman NC (2002) Paranemic cohesion of topologically-closed DNA molecules. J Am Chem Soc 124(44):12940–12941. doi:10.1021/Ja026973b

    CrossRef  CAS  Google Scholar 

  10. Shen ZY, Yan H, Wang T, Seeman NC (2004) Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. J Am Chem Soc 126(6):1666–1674. doi:10.1021/ja038381e

    CrossRef  CAS  Google Scholar 

  11. Wei B, Mi YL (2005) A new triple crossover triangle (TXT) motif for DNA self-assembly. Biomacromolecules 6(5):2528–2532. doi:10.1021/Bm050230b

    CrossRef  CAS  Google Scholar 

  12. Liu Y, Ke YG, Yan H (2005) Self-assembly of symmetric finite-size DNA nanoarrays. J Am Chem Soc 127(49):17140–17141. doi:10.1021/Ja055614o

    CrossRef  CAS  Google Scholar 

  13. Ke YG, Liu Y, Zhang JP, Yan H (2006) A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J Am Chem Soc 128(13):4414–4421. doi:10.1021/Ja058145z

    CrossRef  CAS  Google Scholar 

  14. Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321(5897):1795–1799. doi:10.1126/science.1154533

    CrossRef  CAS  Google Scholar 

  15. Pinheiro AV, Han DR, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6(12):763–772. doi:10.1038/Nnano.2011.187

    CrossRef  CAS  Google Scholar 

  16. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302. doi:10.1038/Nature04586

    CrossRef  CAS  Google Scholar 

  17. Qian L, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y, Liu Q, Fan CH, Hu J, He L (2006) Analogic China map constructed by DNA. Chin Sci Bull 51(24):2973–2976. doi:10.1007/s11434-006-2223-9

    CrossRef  CAS  Google Scholar 

  18. Andersen ES, Dong MD, Nielsen MM, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf KV, Besenbacher F, Kjems J (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218. doi:10.1021/Nn800215j

    CrossRef  CAS  Google Scholar 

  19. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418. doi:10.1038/Nature08016

    CrossRef  CAS  Google Scholar 

  20. Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci U S A 104(16):6644–6648. doi:10.1073/pnas.0700930104

    CrossRef  CAS  Google Scholar 

  21. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):U73–U75. doi:10.1038/Nature07971

    CrossRef  Google Scholar 

  22. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346. doi:10.1126/science.1202998

    CrossRef  CAS  Google Scholar 

  23. Lu Y, Liu JW (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17(6):580–588. doi:10.1016/j.copbio.2006.10.004

    CrossRef  CAS  Google Scholar 

  24. Campolongo MJ, Tan SJ, Xu JF, Luo D (2010) DNA nanomedicine: engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Deliv Rev 62(6):606–616. doi:10.1016/j.addr.2010.03.004

    CrossRef  CAS  Google Scholar 

  25. Liu H, Liu DS (2009) DNA nanomachines and their functional evolution. Chem Commun 19:2625–2636. doi:10.1039/B822719e

    CrossRef  Google Scholar 

  26. Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112(4):2528–2556. doi:10.1021/cr200104q

    CrossRef  CAS  Google Scholar 

  27. Fang XH, Tan WH (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi:10.1021/Ar900101s

    CrossRef  CAS  Google Scholar 

  28. Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998. doi:10.1021/Cr030183i

    CrossRef  CAS  Google Scholar 

  29. Ellington AD, Szostak JW (1990) Invitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    CrossRef  CAS  Google Scholar 

  30. Bunka DHJ, Stockley PG (2006) Aptamers come of age – at last. Nat Rev Microbiol 4(8):588–596. doi:10.1038/Nrmicro1458

    CrossRef  CAS  Google Scholar 

  31. O’Sullivan CK (2002) Aptasensors – the future of biosensing. Anal Bioanal Chem 372(1):44–48. doi:10.1007/s00216-001-1189-3

    CrossRef  Google Scholar 

  32. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-Splicing RNA – auto-excision and auto-cyclization of the ribosomal-RNA intervening sequence of Tetrahymena. Cell 31(1):147–157. doi:10.1016/0092-8674(82)90414-7

    CrossRef  CAS  Google Scholar 

  33. Guerriertakada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease-P is the catalytic subunit of the enzyme. Cell 35(3):849–857. doi:10.1016/0092-8674(83)90117-4

    CrossRef  CAS  Google Scholar 

  34. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94(9):4262–4266. doi:10.1073/pnas.94.9.4262

    CrossRef  CAS  Google Scholar 

  35. Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci U S A 104(7):2056–2061. doi:10.1073/pnas.0607875104

    CrossRef  CAS  Google Scholar 

  36. Santoro SW, Joyce GF, Sakthivel K, Gramatikova S, Barbas CF (2000) RNA cleavage by a DNA enzyme with extended chemical functionality. J Am Chem Soc 122(11):2433–2439

    CrossRef  CAS  Google Scholar 

  37. Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3(12):1039–1046

    CrossRef  CAS  Google Scholar 

  38. Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci U S A 95(5):2233–2237

    CrossRef  CAS  Google Scholar 

  39. Flynn-Charlebois A, Wang YM, Prior TK, Rashid I, Hoadley KA, Coppins RL, Wolf AC, Silverman SK (2003) Deoxyribozymes with 2′–5′ RNA ligase activity. J Am Chem Soc 125(9):2444–2454. doi:10.1021/Ja028774y

    CrossRef  CAS  Google Scholar 

  40. Hoadley KA, Purtha WE, Wolf AC, Flynn-Charlebois A, Silverman SK (2005) Zn2 + -dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry 44(25):9217–9231. doi:10.1021/Bi05046g

    CrossRef  CAS  Google Scholar 

  41. Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) General deoxyribozyme-catalyzed synthesis of native 3′–5′ RNA linkages. J Am Chem Soc 127(38):13124–13125. doi:10.1021/Ja0533702

    CrossRef  CAS  Google Scholar 

  42. Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA-ligase activity. Nature 375(6532):611–614

    CrossRef  CAS  Google Scholar 

  43. Sreedhara A, Li YF, Breaker RR (2004) Ligating DNA with DNA. J Am Chem Soc 126(11):3454–3460. doi:10.1021/Ja039713i

    CrossRef  CAS  Google Scholar 

  44. Travascio P, Bennet AJ, Wang DY, Sen D (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem Biol 6(11):779–787

    CrossRef  CAS  Google Scholar 

  45. Travascio P, Li YF, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5(9):505–517

    CrossRef  CAS  Google Scholar 

  46. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CrossRef  CAS  Google Scholar 

  47. Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun LQ (1999) Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol 17(5):480–486

    CrossRef  CAS  Google Scholar 

  48. Liu MZ, Kagahara T, Abe H, Ito Y (2009) Direct in vitro selection of hemin-binding DNA aptamer with peroxidase activity. Bull Chem Soc Jpn 82(1):99–104. doi:10.1246/Bcsj.82.99

    CrossRef  CAS  Google Scholar 

  49. Sooter LJ, Riedel T, Davidson EA, Levy M, Cox JC, Ellington AD (2001) Toward automated nucleic acid enzyme selection. Biol Chem 382(9):1327–1334

    CrossRef  CAS  Google Scholar 

  50. Sabeti PC, Unrau PJ, Bartel DP (1997) Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem Biol 4(10):767–774

    CrossRef  CAS  Google Scholar 

  51. Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383. doi:10.1021/Ja052405n

    CrossRef  CAS  Google Scholar 

  52. Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. doi:10.1021/Ja037832s

    CrossRef  CAS  Google Scholar 

  53. Mendonsa SD, Bowser MT (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem 76(18):5387–5392. doi:10.1021/Ac049857v

    CrossRef  CAS  Google Scholar 

  54. Lou XH, Qian JR, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci U S A 106(9):2989–2994. doi:10.1073/pnas.0813135106

    CrossRef  CAS  Google Scholar 

  55. Qian JR, Lou XH, Zhang YT, Xiao Y, Soh HT (2009) Generation of highly specific aptamers via micromagnetic selection. Anal Chem 81(13):5490–5495. doi:10.1021/Ac900759k

    CrossRef  Google Scholar 

  56. Cox JC, Rudolph P, Ellington AD (1998) Automated RNA selection. Biotechnol Prog 14(6):845–850

    CrossRef  CAS  Google Scholar 

  57. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9(10):2525–2531

    CrossRef  CAS  Google Scholar 

  58. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30(20):e108. doi:10.1093/nar/gnf107

    CrossRef  Google Scholar 

  59. Eulberg D, Buchner K, Maasch C, Klussmann S (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33(4):e45. doi:10.1093/nar/gni044

    CrossRef  Google Scholar 

  60. Schlosser K, Li YF (2009) Biologically inspired synthetic enzymes made from DNA. Chem Biol 16(3):311–322. doi:10.1016/j.chembiol.2009.01.008

    CrossRef  CAS  Google Scholar 

  61. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884

    CrossRef  CAS  Google Scholar 

  62. Li HY, Park SH, Reif JH, LaBean TH, Yan H (2004) DNA-templated self-assembly of protein and nanoparticle linear arrays. J Am Chem Soc 126(2):418–419. doi:10.1021/Ja0383367

    CrossRef  CAS  Google Scholar 

  63. He Y, Tian Y, Ribbe AE, Mao CD (2006) Antibody nanoarrays with a pitch of similar to 20 nanometers. J Am Chem Soc 128(39):12664–12665. doi:10.1021/Ja065467+

    CrossRef  CAS  Google Scholar 

  64. Niemeyer CM, Sano T, Smith CL, Cantor CR (1994) Oligonucleotide-directed self-assembly of proteins – semisynthetic DNA streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates. Nucleic Acids Res 22(25):5530–5539

    CrossRef  CAS  Google Scholar 

  65. Wang ZG, Wilner OI, Willner I (2009) Self-assembly of aptamer-circular DNA nanostructures for controlled biocatalysis. Nano Lett 9(12):4098–4102. doi:10.1021/Nl902317p

    CrossRef  CAS  Google Scholar 

  66. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22):5073–5078

    CrossRef  CAS  Google Scholar 

  67. Cheglakov Z, Weizmann Y, Braunschweig AB, Wilner OL, Willner I (2008) Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers. Angew Chem Int Ed 47(1):126–130. doi:10.1002/anie.200703688

    CrossRef  CAS  Google Scholar 

  68. Liu Y, Lin CX, Li HY, Yan H (2005) Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed 44(28):4333–4338. doi:10.1002/anie.200501089

    CrossRef  CAS  Google Scholar 

  69. Chhabra R, Sharma J, Ke YG, Liu Y, Rinker S, Lindsay S, Yan H (2007) Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem Soc 129(34):10304–11305. doi:10.1021/Ja072410u

    CrossRef  CAS  Google Scholar 

  70. Garibotti AV, Knudsen SM, Ellington AD, Seeman NC (2006) Functional DNAzymes organized into two-dimensional arrays. Nano Lett 6(7):1505–1507. doi:10.1021/Nl0609955

    CrossRef  CAS  Google Scholar 

  71. Weizmann Y, Braunschweig AB, Wilner OI, Cheglakov Z, Willner I (2008) Supramolecular aptamer-thrombin linear and branched nanostructures. Chem Commun 40:4888–4890. doi:10.1039/B812486h

    CrossRef  Google Scholar 

  72. Rinker S, Ke YG, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3(7):418–422. doi:10.1038/nnano.2008.164

    CrossRef  CAS  Google Scholar 

  73. Liu XW, Yan H, Liu Y, Chang Y (2011) Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 7(12):1673–1682. doi:10.1002/smll.201002292

    CrossRef  CAS  Google Scholar 

  74. Ali MM, Li YF (2009) Colorimetric sensing by using allosteric-DNAzyme-coupled rolling circle amplification and a peptide nucleic acid-organic dye probe. Angew Chem Int Ed 48(19):3512–3515. doi:10.1002/anie.200805966

    CrossRef  CAS  Google Scholar 

  75. Cheglakov Z, Weizmann Y, Basnar B, Willner I (2007) Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Org Biomol Chem 5(2):223–225. doi:10.1039/B615450f

    CrossRef  CAS  Google Scholar 

  76. Tang LH, Liu Y, Ali MM, Kang DK, Zhao WA, Li JH (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84(11):4711–4717. doi:10.1021/Ac203274k

    CrossRef  CAS  Google Scholar 

  77. Wu ZS, Zhou H, Zhang SB, Shen GL, Yu RQ (2010) Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal Chem 82(6):2282–2289. doi:10.1021/Ac902400n

    CrossRef  CAS  Google Scholar 

  78. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278. doi:10.1073/pnas.0407024101

    CrossRef  CAS  Google Scholar 

  79. Wang F, Elbaz J, Orbach R, Magen N, Willner I (2011) Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc 133(43):17149–17151. doi:10.1021/Ja2076789

    CrossRef  CAS  Google Scholar 

  80. Shimron S, Wang F, Orbach R, Willner I (2012) Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. Anal Chem 84(2):1042–1048. doi:10.1021/Ac202643y

    CrossRef  CAS  Google Scholar 

  81. Lin CX, Katilius E, Liu Y, Zhang JP, Yan H (2006) Self-assembled signaling aptamer DNA arrays for protein detection. Angew Chem Int Ed 45(32):5296–5301. doi:10.1002/anie.200600438

    CrossRef  CAS  Google Scholar 

  82. Lin CX, Liu Y, Yan H (2007) Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett 7(2):507–512. doi:10.1021/Nl062998n

    CrossRef  CAS  Google Scholar 

  83. Lin CX, Nangreave JK, Li Z, Lin Y, Yan H (2008) Signal amplification on a DNA-tile-based biosensor with enhanced sensitivity. Nanomedicine 3(4):521–528. doi:10.2217/17435889.3.4.521

    CrossRef  CAS  Google Scholar 

  84. Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat Commun 2, Artn 449, doi:10.1038/Ncomms1452

  85. Chang M, Yang CS, Huang DM (2011) Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5(8):6156–6163. doi:10.1021/nn200693a

    CrossRef  CAS  Google Scholar 

  86. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834. doi:10.1126/science.1214081

    CrossRef  CAS  Google Scholar 

  87. Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43(27):3550–3553. doi:10.1002/anie.200353537

    CrossRef  CAS  Google Scholar 

  88. Chen Y, Mao CD (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126(28):8626–8627. doi:10.1021/Ja047991r

    CrossRef  CAS  Google Scholar 

  89. Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358. doi:10.1002/anie.200500703

    CrossRef  CAS  Google Scholar 

  90. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei RJ, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210. doi:10.1038/Nature09012

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Y., Zhu, Z., Yang, C. (2013). Functional Nucleic Acids for DNA Nanotechnology. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_2

Download citation