Skip to main content

DNA Walking Devices

  • 3400 Accesses

Abstract

Since the concept of structural DNA nanotechnology was laid out early in 1980s, followed by the fundamental steps in programming and engineering DNA nanostructures and later the invention of the DNA origami technique, the field of structural DNA nanotechnology has undergone tremendous development. Taking advantage of the sequence specificity and the resulting spatial addressability of DNA nanostructures, many DNA nanoarchitectures have been used for the organization of heteroelements such as proteins and nanoparticles and for the functionalization to mimic dynamic devices such as scissors and gears. Among these structures, DNA walking devices were the most complicated ones that could combine numbers of functions to realize the signal transduction. In this chapter, we would focus on the discussion of the walking style and the trigger and the functions of these differential DNA walking devices.

Keywords

  • DNA walker
  • DNA motor
  • DNA origami
  • DNA i-motif

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36077-0_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36077-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8

References

  1. Kallenbach NR, Ma R-I, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305(5937):829–831

    CrossRef  CAS  Google Scholar 

  2. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32(13):3211–3220

    CrossRef  CAS  Google Scholar 

  3. LaBean TH, Yan H, Kopatsch J, Liu F, Winfree E, Reif JH, Seeman NC (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860. doi:10.1021/ja993393e

    CrossRef  CAS  Google Scholar 

  4. Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65

    CrossRef  CAS  Google Scholar 

  5. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    CrossRef  CAS  Google Scholar 

  6. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608

    CrossRef  CAS  Google Scholar 

  7. Chen Y, Mao C (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126(28):8626–8627

    CrossRef  CAS  Google Scholar 

  8. Tian Y, Mao C (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126(37):11410–11411

    CrossRef  CAS  Google Scholar 

  9. Liu W, Wang X, Wang T, Sha R, Seeman NC (2007) PX DNA triangle oligomerized using a novel three-domain motif. Nano Lett 8(1):317–322

    CrossRef  CAS  Google Scholar 

  10. Chakraborty B, Sha R, Seeman NC (2008) A DNA-based nanomechanical device with three robust states. Proc Natl Acad Sci 105(45):17245–17249

    CrossRef  CAS  Google Scholar 

  11. Liu C, Jonoska N, Seeman NC (2009) Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett 9(7):2641–2647

    CrossRef  CAS  Google Scholar 

  12. Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314(5805):1583–1585

    CrossRef  CAS  Google Scholar 

  13. Gu H, Chao J, Xiao S-J, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotechnol 4(4):245–248

    CrossRef  CAS  Google Scholar 

  14. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4(7):1203–1207

    CrossRef  CAS  Google Scholar 

  15. Shin J-S, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835

    CrossRef  CAS  Google Scholar 

  16. Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43(37):4906–4911

    CrossRef  CAS  Google Scholar 

  17. Tian Y, He Y, Chen Y, Yin P, Mao C (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358

    CrossRef  CAS  Google Scholar 

  18. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322

    CrossRef  CAS  Google Scholar 

  19. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71

    CrossRef  CAS  Google Scholar 

  20. Gu H, Chao J, Xiao S-J, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295):202–205

    CrossRef  CAS  Google Scholar 

  21. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210

    CrossRef  CAS  Google Scholar 

  22. Mao C, Sun W, Shen Z, Seeman NC (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397(6715):144–146

    CrossRef  CAS  Google Scholar 

  23. Miyoshi D, Karimata H, Wang Z-M, Koumoto K, Sugimoto N (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129(18):5919–5925

    CrossRef  CAS  Google Scholar 

  24. Liu D, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736

    CrossRef  CAS  Google Scholar 

  25. Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11(3):982–987

    CrossRef  CAS  Google Scholar 

  26. Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6(3):166–169

    CrossRef  CAS  Google Scholar 

  27. Wickham SFJ, Bath J, Katsuda Y, Endo M, Hidaka K, Sugiyama H, Turberfield AJ (2012) A DNA-based molecular motor that can navigate a network of tracks. Nat Nanotechnol 7(3):169–173

    CrossRef  CAS  Google Scholar 

  28. Wang Z-G, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed 51(18):4322–4326

    CrossRef  CAS  Google Scholar 

  29. He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5(11):778–782

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhai Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chao, J., Fan, C. (2013). DNA Walking Devices. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_12

Download citation