Skip to main content

Design, Fabrication, and Applications of DNA Nanomachines

Abstract

In this chapter, we outline the shared principles of design and fabrication of DNA nanomachines that are established and newly developed. Various functional DNA nanomachines and their applications are also discussed.

The DNA structures that act as building blocks of DNA nanomachines are introduced briefly. The molecular recognition mechanisms and dynamical properties of these building blocks are described for the elucidation of the design principles of DNA nanomachines. According to the driving mechanisms, the DNA nanomachines are divided into two categories. One category is buffer-dependent DNA nanomachines, which are triggered by changes in the environment, such as metal ions, pH, and protons. The other category is DNA strands-fueled nanomachines, in which the moving forces are generated through the hybridization of carefully designed DNA strands. A variety of DNA-based nanomachines with different functions have been constructed, such as tweezers, rotors, and walkers. Generating highly sensitive and selective response to their fuels (or stimuli), DNA nanomachines can be functionalized for various applications. The buffer-dependent DNA nanomachines have been successfully used as sensors. The specificity of DNA nanomachines is utilized for template synthesis to organize chemicals into close proximity and to control the synthesis process precisely. The switchability of DNA nanomachines is employed for carrying small molecules, nucleic strands, proteins, or even metal nanoparticles. The motions of the DNA nanomachines can also be used to control the loading and release of the nanoscale objects, as well as to transport and assemble the cargos. The immobilized DNA machines on solid phase succeed in generating signal-triggered responsive surface. Finally, we highlight some challenges and prospective.

Keywords

  • DNA nanomachine
  • i-motif
  • G-quadruplex
  • Tweezer
  • Walker
  • Rotor
  • DNA origami

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-36077-0_11
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-36077-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig. 11.15
Fig. 11.16
Fig. 11.17
Fig. 11.18

References

  1. Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99(2):237–247

    CAS  CrossRef  Google Scholar 

  2. Seeman NC, Kallenbach NR (1994) DNA branched junctions. Annu Rev Bioph Biom 23:53–86

    CAS  CrossRef  Google Scholar 

  3. Seeman NC (1998) Nucleic acid nanostructures and topology. Angew Chem Int Ed 37(23):3220–3238

    CAS  CrossRef  Google Scholar 

  4. Seeman NC (2001) DNA nicks and nodes and nanotechnology. Nano Lett 1(1):22–26

    CAS  CrossRef  Google Scholar 

  5. Seeman NC (2003) At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem Biol 10(12):1151–1159

    CAS  CrossRef  Google Scholar 

  6. Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10(3):326–331

    CAS  CrossRef  Google Scholar 

  7. Snoussi K, Nonin-Lecomte S, Leroy JL (2001) The RNA i-motif. J Mol Biol 309(1):139–153

    CAS  CrossRef  Google Scholar 

  8. Phan AT, Kuryavyi V, Patel DJ (2006) DNA architecture: from G to Z. Curr Opin Struct Biol 16(3):288–298

    CAS  CrossRef  Google Scholar 

  9. Lilley DMJ (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys 33(2):109–159

    CAS  CrossRef  Google Scholar 

  10. Seeman NC (2010) Structural DNA, nanotechnology: growing along with Nano Letters. Nano Lett 10(6):1971–1978

    CAS  CrossRef  Google Scholar 

  11. Rothemund PWK (2006) Folding DNA, to create nanoscale shapes and patterns. Nature 440(7082):297–302

    CAS  CrossRef  Google Scholar 

  12. Qian LL, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y et al (2006) Analogic China map constructed by DNA. Chin Sci Bull 51(24):2973–2976

    CAS  CrossRef  Google Scholar 

  13. Ding BQ, Wu H, Xu W, Zhao ZA, Liu Y, Yu HB et al (2010) Interconnecting gold islands with DNA origami nanotubes. Nano Lett 10(12):5065–5069

    CAS  CrossRef  Google Scholar 

  14. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76

    CAS  CrossRef  Google Scholar 

  15. Han DR, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5(10):712–717

    CAS  CrossRef  Google Scholar 

  16. Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346

    CAS  CrossRef  Google Scholar 

  17. Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21(4):376–391

    CAS  CrossRef  Google Scholar 

  18. Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform-flow. Science 268(5207):83–87

    CAS  CrossRef  Google Scholar 

  19. Rivetti C, Walker C, Bustamante C (1998) Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J Mol Biol 280(1):41–59

    CAS  CrossRef  Google Scholar 

  20. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CAS  CrossRef  Google Scholar 

  21. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48(15):2672–2689

    CAS  CrossRef  Google Scholar 

  22. Lilley DMJ (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15(3):313–323

    CAS  CrossRef  Google Scholar 

  23. Silverman SK (2008) Catalytic DNA, (deoxyribozymes) for synthetic applications: current abilities and future prospects. Chem Commun 30:3467–3485

    CrossRef  CAS  Google Scholar 

  24. Jaschke A, Seelig B (2000) Evolution of DNA and RNA as catalysts for chemical reactions. Curr Opin Chem Biol 4(3):257–262

    CAS  CrossRef  Google Scholar 

  25. Yang XP, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45(1):69–83

    CAS  CrossRef  Google Scholar 

  26. Mao CD, Sun WQ, Shen ZY, Seeman NC (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397(6715):144–146

    CAS  CrossRef  Google Scholar 

  27. Niemeyer CM, Adler M, Lenhert S, Gao S, Fuchs H, Chi LF (2001) Nucleic acid supercoiling as a means for ionic switching of DNA-nanoparticle networks. Chembiochem 2(4):260–264

    CAS  CrossRef  Google Scholar 

  28. Buranachai C, McKinney SA, Ha T (2006) Single molecule nanometronome. Nano Lett 6(3):496–500

    CAS  CrossRef  Google Scholar 

  29. Fahlman RP, Hsing M, Sporer-Tuhten CS, Sen D (2003) Duplex pinching: a structural switch suitable for contractile DNA nanoconstructions. Nano Lett 3(8):1073–1078

    CAS  CrossRef  Google Scholar 

  30. Miyoshi D, Karimata H, Wang ZM, Koumoto K, Sugimoto N (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129(18):5919–5925

    CAS  CrossRef  Google Scholar 

  31. Liu DS, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736

    CAS  CrossRef  Google Scholar 

  32. Liu HJ, Xu Y, Li FY, Yang Y, Wang WX, Song YL et al (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed 46(14):2515–2517

    CAS  CrossRef  Google Scholar 

  33. Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5(10):1894–1898

    CAS  CrossRef  Google Scholar 

  34. Wang WX, Liu HJ, Liu DS, Xu YR, Yang Y, Zhou DJ (2007) Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23(24):11956–11959

    CAS  CrossRef  Google Scholar 

  35. Sharma J, Chhabra R, Yan H, Liu Y (2007) pH-driven conformational switch of “i-motif” DNA for the reversible assembly of gold nanoparticles. Chem Commun 5:477–479

    CrossRef  CAS  Google Scholar 

  36. Chen C, Song GT, Ren JS, Qu XG (2008) A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. Chem Commun 46:6149–6151

    CrossRef  CAS  Google Scholar 

  37. Wang WX, Yang Y, Cheng EJ, Zhao MC, Meng HF, Liu DS et al (2009) A pH-driven, reconfigurable DNA nanotriangle. Chem Commun 7:824–826

    CAS  CrossRef  Google Scholar 

  38. Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330

    CAS  CrossRef  Google Scholar 

  39. Chen Y, Lee SH, Mao C (2004) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed 43(40):5335–5338

    CAS  CrossRef  Google Scholar 

  40. Brucale M, Zuccheri G, Samori B (2005) The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 3(4):575–577

    CAS  CrossRef  Google Scholar 

  41. Jung YH, Lee KB, Kim YG, Choi IS (2006) Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 45(36):5960–5963

    CAS  CrossRef  Google Scholar 

  42. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608

    CAS  CrossRef  Google Scholar 

  43. Chen Y, Mao CD (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126(28):8626–8627

    CAS  CrossRef  Google Scholar 

  44. Chen Y, Wang MS, Mao CD (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43(27):3554–3557

    CAS  CrossRef  Google Scholar 

  45. Dittmer WU, Simmel FC (2004) Transcriptional control of DNA-based nanomachines. Nano Lett 4(4):689–691

    CAS  CrossRef  Google Scholar 

  46. Liang XG, Nishioka H, Takenaka N, Asanuma H (2008) A DNA nanomachine powered by light irradiation. Chembiochem 9(5):702–705

    CAS  CrossRef  Google Scholar 

  47. Ogura Y, Nishimura T, Tanida J (2009) Self-contained photonically-controlled DNA tweezers. Appl Phys Express 2(2):025004–025006

    CrossRef  CAS  Google Scholar 

  48. Elbaz J, Moshe M, Willner I (2009) Coherent activation of DNA tweezers: a “SET-RESET” logic system. Angew Chem Int Ed 48(21):3834–3837

    CAS  CrossRef  Google Scholar 

  49. Elbaz J, Wang ZG, Orbach R, Willner I (2009) pH-stimulated concurrent mechanical activation of two DNA “tweezers”. a “SET-RESET” logic gate system. Nano Lett 9(12):4510–4514

    CAS  CrossRef  Google Scholar 

  50. Wang ZG, Elbaz J, Remacle F, Levine RD, Willner I (2010) All-DNA finite-state automata with finite memory. Proc Natl Acad Sci U S A 107(51):21996–22001

    CAS  CrossRef  Google Scholar 

  51. Marini M, Piantanida L, Musetti R, Bek A, Dong MD, Besenbacher F et al (2011) A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett 11(12):5449–5454

    CAS  CrossRef  Google Scholar 

  52. Yan H, Zhang XP, Shen ZY, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65

    CAS  CrossRef  Google Scholar 

  53. Chakraborty B, Sha RJ, Seeman NC (2008) A DNA-based nanomechanical device with three robust states. Proc Natl Acad Sci U S A 105(45):17245–17249

    CAS  CrossRef  Google Scholar 

  54. Liu C, Jonoska N, Seeman NC (2009) Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett 9(7):2641–2647

    CAS  CrossRef  Google Scholar 

  55. Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314(5805):1583–1585

    CAS  CrossRef  Google Scholar 

  56. Gu HZ, Chao J, Xiao SJ, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotechnol 4(4):245–248

    CAS  CrossRef  Google Scholar 

  57. Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4(7):1203–1207

    CAS  CrossRef  Google Scholar 

  58. Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835

    CAS  CrossRef  Google Scholar 

  59. Tian Y, Mao CD (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126(37):11410–11411

    CAS  CrossRef  Google Scholar 

  60. Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43(37):4906–4911

    CAS  CrossRef  Google Scholar 

  61. Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44(28):4358–4361

    CAS  CrossRef  Google Scholar 

  62. Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) Molecular devices – a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358

    CAS  CrossRef  Google Scholar 

  63. Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90(11):118102–118105

    CAS  CrossRef  Google Scholar 

  64. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156

    CAS  CrossRef  Google Scholar 

  65. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322

    CAS  CrossRef  Google Scholar 

  66. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71

    CAS  CrossRef  Google Scholar 

  67. Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101(23):238101–238104

    CAS  CrossRef  Google Scholar 

  68. Pei R, Taylor SK, Stefanovic D, Rudchenko S, Mitchell TE, Stojanovic MN (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128(39):12693–12699

    CAS  CrossRef  Google Scholar 

  69. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210

    CAS  CrossRef  Google Scholar 

  70. Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6(3):166–169

    CAS  CrossRef  Google Scholar 

  71. Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11(3):982–987

    CAS  CrossRef  Google Scholar 

  72. Wang ZG, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed 51(48):4322–4326

    CAS  CrossRef  Google Scholar 

  73. Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed 45(44):7384–7388

    CAS  CrossRef  Google Scholar 

  74. Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129(13):3814–3815

    CAS  CrossRef  Google Scholar 

  75. Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47(21):3927–3931

    CAS  CrossRef  Google Scholar 

  76. Zhu CF, Wen YQ, Li D, Wang LH, Song SP, Fan CH et al (2009) Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. Chem Eur J 15(44):11898–11903

    CAS  CrossRef  Google Scholar 

  77. Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nature Commun 2:1–8

    CrossRef  CAS  Google Scholar 

  78. Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123(28):6961–6963

    CAS  CrossRef  Google Scholar 

  79. Li XY, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed 43(37):4848–4870

    CAS  CrossRef  Google Scholar 

  80. McKee ML, Milnes PJ, Bath J, Stulz E, Turberfield AJ, O’Reilly RK (2010) Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew Chem Int Ed 49(43):7948–7951

    CAS  CrossRef  Google Scholar 

  81. He Y, Liu DR (2011) A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J Am Chem Soc 133(26):9972–9975

    CAS  CrossRef  Google Scholar 

  82. He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5(11):778–782

    CAS  CrossRef  Google Scholar 

  83. Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6(5):978–983

    CAS  CrossRef  Google Scholar 

  84. Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43(27):3550–3553

    CAS  CrossRef  Google Scholar 

  85. Xu Y, Hirao Y, Nishimura Y, Sugiyama H (2007) I-motif and quadruplex-based device that can control a protein release or bind and release small molecule to influence biological processes. Bioorgan Med Chem 15(3):1275–1279

    CAS  CrossRef  Google Scholar 

  86. Mao YD, Liu DS, Wang ST, Luo SN, Wang WX, Yang YL et al (2007) Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res 35(5):e33

    CrossRef  CAS  Google Scholar 

  87. Cheng EJ, Xing YZ, Chen P, Yang Y, Sun YW, Zhou DJ et al (2009) A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed 48(41):7660–7663

    CAS  CrossRef  Google Scholar 

  88. Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3(2):93–96

    CAS  CrossRef  Google Scholar 

  89. Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5(7):5427–5432

    CAS  CrossRef  Google Scholar 

  90. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    CAS  CrossRef  Google Scholar 

  91. Fu J, Yan H (2012) Controlled drug release by a nanorobot. Nat Biotechnol 30(5):407–408

    CAS  CrossRef  Google Scholar 

  92. Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821

    CAS  CrossRef  Google Scholar 

  93. Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50(9):2041–2044

    CAS  CrossRef  Google Scholar 

  94. Pilo-Pais M, Goldberg S, Samano E, LaBean TH, Finkelstein G (2011) Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett 11(8):3489–3492

    CAS  CrossRef  Google Scholar 

  95. Shen XB, Song C, Wang JY, Shi DW, Wang ZA, Liu N et al (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134(1):146–149

    CAS  CrossRef  Google Scholar 

  96. Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295):202–205

    CAS  CrossRef  Google Scholar 

  97. Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science 319(5863):594–596

    CAS  CrossRef  Google Scholar 

  98. Liedl T, Olapinski M, Simmel FC (2006) A surface-bound DNA switch driven by a chemical oscillator. Angew Chem Int Ed 45(30):5007–5010

    CAS  CrossRef  Google Scholar 

  99. Liu DS, Bruckbauer A, Abell C, Balasubramanian S, Kang DJ, Klenerman D et al (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128(6):2067–2071

    CAS  CrossRef  Google Scholar 

  100. Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME et al (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127(48):17054–17060

    CAS  CrossRef  Google Scholar 

  101. Wang ST, Liu HJ, Liu DS, Ma XY, Fang XH, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed 46(21):3915–3917

    CAS  CrossRef  Google Scholar 

  102. Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW et al (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350

    CAS  CrossRef  Google Scholar 

  103. Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y et al (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805

    CAS  CrossRef  Google Scholar 

  104. Elbaz J, Tel-Vered R, Freeman R, Yildiz HB, Willner I (2008) Switchable motion of DNA on solid supports. Angew Chem Int Ed 48(1):133–137

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoquan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, C., Wang, ZG., Ding, B. (2013). Design, Fabrication, and Applications of DNA Nanomachines. In: Fan, C. (eds) DNA Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36077-0_11

Download citation