Approximation Algorithms for the Partition Vertex Cover Problem

  • Suman Kalyan Bera
  • Shalmoli Gupta
  • Amit Kumar
  • Sambuddha Roy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7748)


We consider a natural generalization of the Partial Vertex Cover problem. Here an instance consists of a graph G = (V,E), a cost function c: V → ℤ + , a partition P 1, …, P r of the edge set E, and a parameter k i for each partition P i . The goal is to find a minimum cost set of vertices which cover at least k i edges from the partition P i . We call this the Partition-VC problem. In this paper, we give matching upper and lower bound on the approximability of this problem. Our algorithm is based on a novel LP relaxation for this problem. This LP relaxation is obtained by adding knapsack cover inequalities to a natural LP relaxation of the problem. We show that this LP has integrality gap of O(logr), where r is the number of sets in the partition of the edge set. We also extend our result to more general settings.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New York (2001)Google Scholar
  2. 2.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2010)Google Scholar
  3. 3.
    Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for approximating the weighted vertex cover (1981)Google Scholar
  4. 4.
    Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston (1997)Google Scholar
  5. 5.
    Bshouty, N.H., Burroughs, L.: Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Hochbaum, D.S.: The t-Vertex Cover Problem: Extending the Half Integrality Framework with Budget Constraints. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bar-Yehuda, R.: Using homogenous weights for approximating the partial cover problem. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1999, pp. 71–75. Society for Industrial and Applied Mathematics, Philadelphia (1999)Google Scholar
  8. 8.
    Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 106–115. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  10. 10.
    Kearns, M.J.: The computational complexity of machine learning (1990)Google Scholar
  11. 11.
    Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)CrossRefGoogle Scholar
  12. 12.
    Mestre, J.: A primal-dual approximation algorithm for partial vertex cover: Making educated guesses. Algorithmica 55(1), 227–239 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bar-Yehuda, R., Flysher, G., Mestre, J., Rawitz, D.: Approximation of Partial Capacitated Vertex Cover. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 335–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2001, pp. 642–651. Society for Industrial and Applied Mathematics, Philadelphia (2001)Google Scholar
  15. 15.
    Chen, K.: A constant factor approximation algorithm for k-median clustering with outliers. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 826–835. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  16. 16.
    Garg, N.: Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 396–402. ACM, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Golovin, D., Nagarajan, V., Singh, M.: Approximating the k-multicut problem. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 621–630. ACM, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: STOC, pp. 783–792 (2011)Google Scholar
  19. 19.
    Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Carnes, T., Shmoys, D.: Primal-Dual Schema for Capacitated Covering Problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Hochbaum, D.S.: Approximation algorithm for the weighted set covering and node cover problems (1980) (unpublished manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suman Kalyan Bera
    • 1
  • Shalmoli Gupta
    • 2
  • Amit Kumar
    • 3
  • Sambuddha Roy
    • 1
  1. 1.IBM India Research LabNew DelhiIndia
  2. 2.University of Illinois at Urbana-ChampaignUSA
  3. 3.Indian Institute of Technology DelhiIndia

Personalised recommendations