Abstract
While active flow control is an established method for controlling flow separation on vehicles and airfoils, the design of the actuation is often done by trial and error. In this paper, the development of a discrete and a continuous adjoint flow solver for the optimal control of unsteady turbulent flows governed by the incompressible Reynolds-averaged Navier-Stokes equations is presented. Both approaches are applied to testcases featuring active flow control of the blowing and suction type and are compared in terms of accuracy of the computed gradient.
Chapter PDF
Similar content being viewed by others
Keywords
References
Carnarius, A., Thiele, F., Özkaya, E., Gauger, N.R.: Adjoint approaches for optimal flow control. AIAA Paper 2010-5088 (2010)
Christianson, B.: Reverse accumulation and attractive fixed points. Optimization Methods and Software 3, 311–326 (1994)
Elliot, J., Peraire, J.: Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA Journal 35(9), 1479–1485 (1997)
Gad-el-Hak, M.: The Taming of the Shrew: Why Is It so Difficult to Control Turbulence. In: King, R. (ed.) Active Flow Control. NNFM, vol. 95, pp. 1–24. Springer, Heidelberg (2007)
Gauger, N.R., Walther, A., Moldenhauer, C., Widhalm, M.: Automatic Differentiation of an Entire Design Chain for Aerodynamic Shape Optimization. In: Tropea, C., Jakirlic, S., Heinemann, H.-J., Henke, R., Hönlinger, H. (eds.) New Results in Numerical and Experimental Fluid Mechanics VI. NNFM, vol. 96, pp. 454–461. Springer, Heidelberg (2007)
Giles, M.B., Ghate, D., Duta, M.C.: Algorithm Developments for Discrete Adjoint Methods. AIAA Journal 41(2), 198–205 (2003)
Griewank, A., Walther, A.: Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math. Software 26(1), 19–45 (2000)
Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. SIAM, Other Titles in Applied Mathematics, Philadelphia (2008)
Hascoët, L., Pascual, V.: TAPENADE 2.1 user’s guide. Technical Report, INRIA (2004)
Jameson, A.: Aerodynamic Design via Control Theory. Journal of Scientific Computing 3, 233–260 (1988)
Nemili, A., Özkaya, E., Gauger, N.R., Carnarius, A., Thiele, F.: Optimal Control of Unsteady Flows Using Discrete Adjoints. AIAA-Paper 2011-3720 (2011)
Nielsen, E., Anderson, W.K.: Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA Journal 37(11), 957–964 (1999)
Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 10(1), 110–112 (1998)
Stumm, P., Walther, A.: Multistage approaches for optimal offline checkpointing. SIAM J. Scientific Computing 31(3), 1946–1967 (2009)
Wilcox, D.C.: Reassesment of the scale determing equation for advanced turbulence models. AIAA Journal 26(11) (1988)
Xue, L.: Entwicklung eines effizienten parallelen Lösungsalgorithmus zur dreidimensionalen Simulation komplexer turbulenter Strömungen. PHD thesis, Institut für Strömungmechanik und Technische Akustik, Technische Universität Berlin (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Carnarius, A., Thiele, F., Özkaya, E., Nemili, A., Gauger, N.R. (2013). Optimal Control of Unsteady Flows Using a Discrete and a Continuous Adjoint Approach. In: Hömberg, D., Tröltzsch, F. (eds) System Modeling and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36062-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-36062-6_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36061-9
Online ISBN: 978-3-642-36062-6
eBook Packages: Computer ScienceComputer Science (R0)