Skip to main content

Data and Methods

  • Chapter
  • First Online:
  • 782 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The study is based on multi-disciplinary data, comprising 3D seismic, wireline and core data. Seismic data include a 293 km2 3D-seismic volume in pre-stack depth-migration (PSDM) and post-stack time-migration (PSTM). Furthermore, the seismic data set contains a regional, 100 km long, W-E-oriented, PSTM 2D seismic line that crosses the southern part of the 3D seismic survey.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rowan MG (1993) A systematic technique for the sequential restoration of salt structures. In: New insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics, Cobbold. Tectonophysics, vol 228(3–4), p 331–348

    Google Scholar 

  2. Jennings CW (1975) Fault map of California with location of volcanoes, thermal springs, and thermal wells: California Division of Mines and Geology Geologic Data Map No. 1, scale 1:750,000, 1 sheet

    Google Scholar 

  3. Jennings CW, Bryant WA, Saucedo G (2010) Fault activity map of California. California geological survey 150th anniversary: California geologic data map series map no 6, scale 1:750,000, 1 sheet

    Google Scholar 

  4. Hardie LA, Smoot JP,Eugster HP (1978) Saline lakes and their deposits: a sedimentological approach. In: Matter A, Tucker ME (eds) Modern and Ancient Lake Sediments. International Association of Sedimentologists Special Publication, vol 2, p 7–42

    Google Scholar 

  5. Rosen MR (1994) The importance of groundwater in playas: a review of playa classification and the sedimentology and hydrology of playas. In: Rosen MR (ed) Paleoclimate and basin evolution of playa systems. Geological Society of America, Special Paper, vol 289, p 1–18

    Google Scholar 

  6. Amthor JE, Okkerman J (1998) Influence of early diagenesis on reservoir quality of rotliegende sandstone, Northern Netherlands. AAPG Bull 82:2246–2265

    Google Scholar 

  7. Glennie KW (1970) Desert sedimentary environments. Elsevier, Developments in Sedimentology, vol 14, Amsterdam, p 222

    Google Scholar 

  8. Leeder M (1999) Sedimentology of sedimentary basins—from turbulence to tectonics. Blackwell Science, Oxford, p 608

    Google Scholar 

  9. Mountney NP, Jagger A (2004) Stratigraphic evolution of an erg margin aeolian system: the Permian Cedar Mesa Sandstone, SE Utah, USA. Sedimentology 51:713–743

    Article  Google Scholar 

  10. George GT, Berry JK (1993) A new palaeogeographic and depositional model for the Upper Rotliegend of the UK sector of the Southern North Sea. In: North CP, Prosser DJ (eds) Characterization of Fluvial and Aeolian Reservoirs. Geological Society of London, Special Publication, vol 73, pp 291–319

    Google Scholar 

  11. Fryberger SG, Ahlbrand TS, Andrews S (1979) Origin, sedimentary features and significance of low-angle eolian `sand sheet´ deposits. Great Sand Dunes National Monument and vicinity, Colorado. J Sed Petrol 49:733–746

    Article  Google Scholar 

  12. Kocurek G, Nielson J (1986) Conditions favourable for the formation of warm-climate aeolian and sand sheets. Sedimentology 33:751–816

    Article  Google Scholar 

  13. Kocurek G, Townsley M, Yeh E, Havholm KG, Sweet ML (1992) Dune and dune field development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. J Sed Petrol 62:622–635

    Google Scholar 

  14. Lancaster N (1995) Geomorphology of Desert Dunes. Routledge, London, p 312

    Book  Google Scholar 

  15. Bagnold RA (1954) The Physics of blown Sands and desert dunes, 2nd edn. Chapman and Hall, London 265p

    Google Scholar 

  16. Jaritz W (1973) Zur Entstehung der Salzstrukturen Nordwestdeutschlands. Geol Jb A 10:1–77

    Google Scholar 

  17. Baldschuhn R, Best G, Binot S, Brückner-Röhling S, Deneke E, Frisch U, Hoffmann N, Jürgens U, Kockel F, Krull P, Röhling H-G, Sattler-Kosinowski S, Stancu-Kristoff G, Zirngast M (1999) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Tectonic Atlas of Northwest Germany and the German North Sea Sector. In: Baldschuhn R, Binot F, Frisch U, Kockel F (eds) Geologisches Jahrbuch Reihe A, vol 153, p 88, 3CDs

    Google Scholar 

  18. Antrett P (2011) Characterization of an upper permian tight gas reservoir—a multidisciplinary, multi-scale analysis from the Rotliegend. Northern Germany, Dissertation, p 125

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Alexandra Vackiner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vackiner, A.A. (2013). Data and Methods. In: Sedimentary Facies Reconstruction and Kinematic Restoration of Tight Gas Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36047-3_3

Download citation

Publish with us

Policies and ethics