Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7721))

Abstract

Inspired by the heuristic algorithm for boolean-width by Telle et. al. [1], we develop a heuristic algorithm for rank-width. We compare results on graphs of practical relevance to the established bounds of boolean-width. While the width of most graphs is lower than the known values for tree-width, it turns out that the boolean-width heuristic is able to find decompositions of significantly lower width. In a second step we therefore present a further algorithm that can decide if for a graph G and a value k exists a rank-decomposition of width lower than k. This enables to show that boolean-width is in fact lower than or equal to rank-width on many of the investigated graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding Good Decompositions for Dynamic Programming on Dense Graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Courcelle, B.: The monadic second-order logic of graphs i. recognizable sets of finite graphs. Information and Computation, 12–75 (1990)

    Google Scholar 

  3. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theory of Computing Systems 33, 125–150 (1999)

    Article  MathSciNet  Google Scholar 

  4. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Recent progress in practical aspects of mso model-checking (in preparation, 2012)

    Google Scholar 

  5. Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Information and Computation 208(3), 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hliněny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Computer Journal, 10–1093 (2007)

    Google Scholar 

  7. Oum, S.I.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 10:1–10:20 (2008)

    Google Scholar 

  8. Bodlaender, H., van den Broek, J.W.: Treewidthlib: A benchmark for algorithms for treewidth and related graph problems (2004), http://www.cs.uu.nl/research/projects/treewidthlib/

  9. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Robertson, N., Seymour, P.: Graph minors. x. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96, 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oum, S.I.: Rank-width is less than or equal to branch-width. Journal of Graph Theory 57(3), 239–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing. ACM, New York (1993)

    Google Scholar 

  15. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society, Boston (1996)

    Google Scholar 

  16. Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete Mathematics 309(1), 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rlfap, E., Eindhoven, T.U., Group, R.: Euclid calma radio link frequency assignment project technical annex t-2.3.3: Local search (1995)

    Google Scholar 

  18. Bilmes, J.: Uai 2006 inference evaluation results. Technical report, University of Washington, Seattle (2006)

    Google Scholar 

  19. Oum, S.I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyß, M. (2013). Fast Algorithm for Rank-Width. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds) Mathematical and Engineering Methods in Computer Science. MEMICS 2012. Lecture Notes in Computer Science, vol 7721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36046-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36046-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36044-2

  • Online ISBN: 978-3-642-36046-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics