Inspired by the heuristic algorithm for boolean-width by Telle et. al. [1], we develop a heuristic algorithm for rank-width. We compare results on graphs of practical relevance to the established bounds of boolean-width. While the width of most graphs is lower than the known values for tree-width, it turns out that the boolean-width heuristic is able to find decompositions of significantly lower width. In a second step we therefore present a further algorithm that can decide if for a graph G and a value k exists a rank-decomposition of width lower than k. This enables to show that boolean-width is in fact lower than or equal to rank-width on many of the investigated graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding Good Decompositions for Dynamic Programming on Dense Graphs. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Courcelle, B.: The monadic second-order logic of graphs i. recognizable sets of finite graphs. Information and Computation, 12–75 (1990)Google Scholar
  3. 3.
    Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. Theory of Computing Systems 33, 125–150 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Recent progress in practical aspects of mso model-checking (in preparation, 2012)Google Scholar
  5. 5.
    Bodlaender, H.L., Koster, A.M.: Treewidth computations i. upper bounds. Information and Computation 208(3), 259–275 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hliněny, P., Oum, S.I., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Computer Journal, 10–1093 (2007)Google Scholar
  7. 7.
    Oum, S.I.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 10:1–10:20 (2008)Google Scholar
  8. 8.
    Bodlaender, H., van den Broek, J.W.: Treewidthlib: A benchmark for algorithms for treewidth and related graph problems (2004),
  9. 9.
    Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Robertson, N., Seymour, P.: Graph minors. x. obstructions to tree-decomposition. Journal of Combinatorial Theory, Series B 52(2), 153–190 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Oum, S.I., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96, 514–528 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical Computer Science 412(39), 5187–5204 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Oum, S.I.: Rank-width is less than or equal to branch-width. Journal of Graph Theory 57(3), 239–244 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing. ACM, New York (1993)Google Scholar
  15. 15.
    Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993. American Mathematical Society, Boston (1996)Google Scholar
  16. 16.
    Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete Mathematics 309(1), 1–31 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rlfap, E., Eindhoven, T.U., Group, R.: Euclid calma radio link frequency assignment project technical annex t-2.3.3: Local search (1995)Google Scholar
  18. 18.
    Bilmes, J.: Uai 2006 inference evaluation results. Technical report, University of Washington, Seattle (2006)Google Scholar
  19. 19.
    Oum, S.I.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Beyß
    • 1
  1. 1.RWTH Aachen UniversityGermany

Personalised recommendations