Advertisement

Abstract

Quicksort may be the most familiar and important randomised algorithm studied in computer science. It is well known that the expected number of comparisons on any input of n distinct keys is Θ(n ln n), and the probability of a large deviation above the expected value is very small. This probability was well estimated some time ago, with an ad-hoc proof: we shall revisit this result in the light of further work on concentration.

Keywords

Binary Tree List Length Binary Search Tree Partition Tree Fundamental Lemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 2nd edn. MIT Press, McGraw Hill (2001)Google Scholar
  2. 2.
    Devroye, L.: A note on the height of binary search trees. Journal of the ACM 33, 489–498 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Durrett, R.: Probability: Theory and Examples, 4th edn. Cambridge University Press (2010)Google Scholar
  4. 4.
    Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)zbMATHCrossRefGoogle Scholar
  5. 5.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press (2001)Google Scholar
  6. 6.
    Hennequin, P.: Combinatorial analysis of quicksort algorithm. Theoretical Informatics and Applications 23, 317–333 (1989)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hoare, C.A.R.: Partition (algorithm 63), quicksort (algorithm 64), and find (algorithm 65). J. ACM 7, 321–322 (1961)Google Scholar
  8. 8.
    Hoare, C.A.R.: Quicksort. Computer J. 5, 10–15 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Knuth, D.: The Art of Computer Programming vol. 3: Sorting and Searching, 3rd edn. Addison-Wesley (1997)Google Scholar
  10. 10.
    Mahmoud, H.M.: Evolution of Random Search Trees. Wiley, New York (1992)zbMATHGoogle Scholar
  11. 11.
    McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics. London Math Society (1989)Google Scholar
  12. 12.
    McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer (1998)Google Scholar
  13. 13.
    McDiarmid, C., Hayward, R.: Strong concentration for quicksort. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–421 (1992)Google Scholar
  14. 14.
    McDiarmid, C., Hayward, R.: Large deviations for Quicksort. J. Algorithms 21, 476–507 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Régnier, M.: A limiting distribution for quicksort. Theoretical Informatics and Applications 23, 335–343 (1989)zbMATHGoogle Scholar
  16. 16.
    Rösler, U.: A limit theorem for quicksort. Theoretical Informatics and Applications 25, 85–100 (1991)zbMATHGoogle Scholar
  17. 17.
    Sedgewick, R.: Quicksort, 1st edn. Garland Publishing Inc. (1980)Google Scholar
  18. 18.
    Shiryaev, A.N.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95. Springer (1996)Google Scholar
  19. 19.
    VanEmden, M.H.: Increasing the efficiency of quicksort. Communications of the ACM 13, 563–567 (1970)CrossRefGoogle Scholar
  20. 20.
    Williams, D.: Probability with Martingales. Cambridge University Press (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Colin McDiarmid
    • 1
  1. 1.University of OxfordUK

Personalised recommendations