Advertisement

Ciphertext-Only Attack on Gentry-Halevi Implementation of Somewhat Homomorphic Scheme

  • Michal Mikuš
  • Marek Sýs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)

Abstract

In this paper we examine the first working implementation of a fully homomorphic scheme from C.Gentry and S.Halevi. We implemented the ciphertext-only attack from [2] using the NTL library and show that only dimensions up to 128 are feasible for common computational power. We propose also two improvements of this attack that enable us to use the fastest variant of LLL from NTL and compare the results.

Keywords

Error Vector Homomorphic Encryption Short Vector Cryptology ePrint Archive Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gu, C.: New Fully Homomorphic Encryption over the Integers. Cryptology ePrint Archive, Report 2011/118, (September 21, 2011), http://eprint.iacr.org/2011/118
  2. 2.
    Gu, C.: Cryptanalysis of the Smart-Vercauteren and Gentry-Halevis Fully Homomorphic Encryption. IACR Cryptology ePrint Archive 2011: 328 (2011)Google Scholar
  3. 3.
    Gu, C.: Personal Communication (2012)Google Scholar
  4. 4.
    Coron, J.S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers. Cryptology ePrint Archive, Report 2011/440 (2011), http://eprint.iacr.org/2011/440 (July 29, 2012)
  5. 5.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC 2009), Bethesda, USA, pp. 169–178 (2009)Google Scholar
  7. 7.
    Gentry, C.: A fully homomorphic encryption scheme. Dissertation Thesis, Stanford University (September 2009)Google Scholar
  8. 8.
    Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Lenstra, A., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 4, 515–534 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Loftus, C., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2010/560 (2010), http://eprint.iacr.org/2010/560 (September 21, 2011)
  12. 12.
    Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM Journal on Computing 30(6), 2008–2035 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Nguyen, P.Q., Valée, B.: LLL algorithm, Survey and Applications. Springer (2010)Google Scholar
  14. 14.
    Rappe, D.K.: Homomorphic cryptosystems and their applications. PhD Thesis, University of Dortmund, Dortmund, Germany (2004)Google Scholar
  15. 15.
    Shoup, V.: A library for doing Number Theory, v.5.5.2. New York University, New York (July, 29, 2012), http://shoup.net/ntl/
  16. 16.
    Schmidt, P.: Fully Homomorphic Encryption - Overview and Cryptanalysis. Diploma Thesis, University of Dortmund, Dortmund, Germany (2011)Google Scholar
  17. 17.
    Schnorr, C.P.: Block reduced lattice bases and successive minima. Combinatorics, Probability & Computing 3, 507–552 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming 66, 181–199 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Smart, N.P.,Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. Cryptology ePrint Archive, Report 2009/571 (2009), http://eprint.iacr.org/2009/571 (September 21, 2011)
  20. 20.
    Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michal Mikuš
    • 1
  • Marek Sýs
    • 1
  1. 1.Institute of Mathematics and Applied Informatics, Faculty of Electrical Engineering and Information TechnologySlovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations