Advertisement

Action Investment Energy Games

  • Kim G. Larsen
  • Simon Laursen
  • Jiří Srba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)

Abstract

We introduce the formalism of action investment energy games where we study the trade-off between investments limited by given budgets and resource constrained (energy) behavior of the underlying system. More specifically, we consider energy games extended with costs of enabling actions and fixed budgets for each player. We ask the question whether for any Player 2 investment there exists a Player 1 investment such that Player 1 wins the resulting energy game. We study the action investment energy game for energy intervals with both upper and lower bounds, and with a lower bound only, and give a complexity results overview for the problem of deciding the winner in the game.

Keywords

Model Check Boolean Variable Software Product Line Winning Strategy Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beneš, N., Křetínský, J., Guldstrand Larsen, K., Møller, M.H., Srba, J.: Dual-Priced Modal Transition Systems with Time Durations. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 122–137. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under energy constraints. In: HSCC 2010, pp. 61–70 (2010)Google Scholar
  3. 3.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L.: Energy and Mean-Payoff Parity Markov Decision Processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS. LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  7. 7.
    Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic model checking of software product lines. In: ICSE, pp. 321–330. ACM (2011)Google Scholar
  8. 8.
    Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model checking lots of systems: efficient verification of temporal properties in software product lines. In: ICSE (1), pp. 335–344. ACM (2010)Google Scholar
  9. 9.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted Automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kim G. Larsen
    • 1
  • Simon Laursen
    • 1
  • Jiří Srba
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations