Advertisement

Controllable-Choice Message Sequence Graphs

  • Martin Chmelík
  • Vojtěch Řehák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)

Abstract

We focus on the realizability problem of Message Sequence Graphs (MSG), i.e. the problem whether a given MSG specification is correctly distributable among parallel components communicating via messages. This fundamental problem of MSG is known to be undecidable. We introduce a well motivated restricted class of MSG, so called controllable-choice MSG, and show that all its models are realizable and moreover it is decidable whether a given MSG model is a member of this class. In more detail, this class of MSG specifications admits a deadlock-free realization by overloading existing messages with additional bounded control data. We also show that the presented class is the largest known subclass of MSG that allows for deadlock-free realization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In: Proc. of ICSE, pp. 304–313 (2000)Google Scholar
  2. 2.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theor. Comp. Science 331(1), 97–114 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alur, R., Holzmann, G.J., Peled, D.: An Analyzer for Message Sequence Charts. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Baudru, N., Morin, R.: Safe implementability of regular message sequence chart specifications. In: Proc. of ACIS, pp. 210–217 (2003)Google Scholar
  6. 6.
    Ben-Abdallah, H., Leue, S.: Syntactic Detection of Process Divergence and Non-local Choice in Message Sequence Charts. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Chen, C.-A., Kalvala, S., Sinclair, J.E.: Race Conditions in Message Sequence Charts. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 195–211. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chmelík, M., Řehák, V.: Controllable-choice message sequence graphs. CoRR, abs/1209.4499 (2012)Google Scholar
  9. 9.
    Chmelík, M.: Deciding Non–local Choice in High–level Message Sequence Charts Bachelor thesis, Faculty of Informatics, Masaryk University, Brno (2009)Google Scholar
  10. 10.
    Dan, H., Hierons, R.M., Counsell, S.: A framework for pathologies of message sequence charts. Information and Software Technology (in press, 2012)Google Scholar
  11. 11.
    Elkind, E., Genest, B., Peled, D.A.: Detecting Races in Ensembles of Message Sequence Charts. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 420–434. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Genest, B., Muscholl, A.: The Structure of Local-Choice in High-Level Message Sequence Charts (HMSC). Technical report, LIAFA, Université Paris VII (2002)Google Scholar
  13. 13.
    Genest, B., Muscholl, A., Kuske, D.: A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs: Model-Checking and Realizability. Journal of Computer and System Sciences 72(4), 617–647 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill (1962)Google Scholar
  16. 16.
    ITU Telecommunication Standardization Sector Study group 17. ITU recommandation Z.120, Message Sequence Charts, MSC (2004)Google Scholar
  17. 17.
    Jard, C., Abdallah, R., Hélouët, L.: Realistic Implementation of Message Sequence Charts. Rapport de recherche RR-7597, INRIA (April 2011)Google Scholar
  18. 18.
    Ladkin, P.B., Leue, S.: Interpreting Message Flow Graphs. Formal Aspects of Computing 7(5), 473–509 (1995)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps. Theoretical Computer Science 309(1-3), 529–554 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mooij, A.J., Goga, N., Romijn, J.M.T.: Non-local Choice and Beyond: Intricacies of MSC Choice Nodes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 273–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Mousavi, A., Far, B., Eberlein, A.: The Problematic Property of Choice Nodes in high-level Message Sequence Charts. Tech. report, University of Calgary (2006)Google Scholar
  22. 22.
    Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing Distributed Finite-State Systems from MSCs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 521–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Řehák, V., Slovák, P., Strejček, J., Hélouët, L.: Decidable Race Condition and Open Coregions in HMSC. Elect. Communications of the EASST 29, 1–12 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Chmelík
    • 1
  • Vojtěch Řehák
    • 2
  1. 1.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations