Controllable-Choice Message Sequence Graphs

  • Martin Chmelík
  • Vojtěch Řehák
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7721)


We focus on the realizability problem of Message Sequence Graphs (MSG), i.e. the problem whether a given MSG specification is correctly distributable among parallel components communicating via messages. This fundamental problem of MSG is known to be undecidable. We introduce a well motivated restricted class of MSG, so called controllable-choice MSG, and show that all its models are realizable and moreover it is decidable whether a given MSG model is a member of this class. In more detail, this class of MSG specifications admits a deadlock-free realization by overloading existing messages with additional bounded control data. We also show that the presented class is the largest known subclass of MSG that allows for deadlock-free realization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In: Proc. of ICSE, pp. 304–313 (2000)Google Scholar
  2. 2.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC graphs. Theor. Comp. Science 331(1), 97–114 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alur, R., Holzmann, G.J., Peled, D.: An Analyzer for Message Sequence Charts. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Baudru, N., Morin, R.: Safe implementability of regular message sequence chart specifications. In: Proc. of ACIS, pp. 210–217 (2003)Google Scholar
  6. 6.
    Ben-Abdallah, H., Leue, S.: Syntactic Detection of Process Divergence and Non-local Choice in Message Sequence Charts. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Chen, C.-A., Kalvala, S., Sinclair, J.E.: Race Conditions in Message Sequence Charts. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 195–211. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chmelík, M., Řehák, V.: Controllable-choice message sequence graphs. CoRR, abs/1209.4499 (2012)Google Scholar
  9. 9.
    Chmelík, M.: Deciding Non–local Choice in High–level Message Sequence Charts Bachelor thesis, Faculty of Informatics, Masaryk University, Brno (2009)Google Scholar
  10. 10.
    Dan, H., Hierons, R.M., Counsell, S.: A framework for pathologies of message sequence charts. Information and Software Technology (in press, 2012)Google Scholar
  11. 11.
    Elkind, E., Genest, B., Peled, D.A.: Detecting Races in Ensembles of Message Sequence Charts. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 420–434. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Genest, B., Muscholl, A.: The Structure of Local-Choice in High-Level Message Sequence Charts (HMSC). Technical report, LIAFA, Université Paris VII (2002)Google Scholar
  13. 13.
    Genest, B., Muscholl, A., Kuske, D.: A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 30–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs: Model-Checking and Realizability. Journal of Computer and System Sciences 72(4), 617–647 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill (1962)Google Scholar
  16. 16.
    ITU Telecommunication Standardization Sector Study group 17. ITU recommandation Z.120, Message Sequence Charts, MSC (2004)Google Scholar
  17. 17.
    Jard, C., Abdallah, R., Hélouët, L.: Realistic Implementation of Message Sequence Charts. Rapport de recherche RR-7597, INRIA (April 2011)Google Scholar
  18. 18.
    Ladkin, P.B., Leue, S.: Interpreting Message Flow Graphs. Formal Aspects of Computing 7(5), 473–509 (1995)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps. Theoretical Computer Science 309(1-3), 529–554 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mooij, A.J., Goga, N., Romijn, J.M.T.: Non-local Choice and Beyond: Intricacies of MSC Choice Nodes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 273–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Mousavi, A., Far, B., Eberlein, A.: The Problematic Property of Choice Nodes in high-level Message Sequence Charts. Tech. report, University of Calgary (2006)Google Scholar
  22. 22.
    Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing Distributed Finite-State Systems from MSCs. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 521–535. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Řehák, V., Slovák, P., Strejček, J., Hélouët, L.: Decidable Race Condition and Open Coregions in HMSC. Elect. Communications of the EASST 29, 1–12 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Chmelík
    • 1
  • Vojtěch Řehák
    • 2
  1. 1.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations