Abstract
We consider the task of model building and model checking for temporal logic specifications over general linear flows of time.
We present a new notation for giving a detailed description of the compositional construction of such a model and an efficient procedure for finding it from the temporal specification.
We then also present an algorithm for checking whether a particular temporal formula holds in a general linear model.
Applications include reasoning about distributed and concurrent systems, multi-agent systems, and understanding natural language.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre Dame J. Formal Logic 26(2), 115–128 (1985)
Burgess, J.P.: Axioms for tense logic I: “Since” and “Until”. Notre Dame J. Formal Logic 23(2), 367–374 (1982)
French, T., McCabe-Dansted, J., Reynolds, M.: Synthesis for temporal logic over the reals. In: AiML 2012, pp. 217–238 (2012)
French, T., McCabe-Dansted, J., Reynolds, M.: Synthesis for general linear time (submitted, 2012)
Gabbay, D.M., Hodkinson, I.M.: An axiomatisation of the temporal logic with until and since over the real numbers. Journal of Logic and Computation 1(2), 229–260 (1990)
Gabbay, D.M., Hodkinson, I.M., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press (1994)
Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: 7th ACM Symposium on Principles of Programming Languages, Las Vegas, pp. 163–173 (1980)
Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A Space-Efficient on-the-Fly Algorithm for Real-time Model Checking. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)
Kamp, H.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (1968)
Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta Mathematicae 59, 109–116 (1966)
Németi, I.: Decidable versions of first order logic and cylindric-relativized set algebras. In: Csirmaz, L., Gabbay, D., de Rijke, M. (eds.) Logic Colloquium 1992, pp. 171–241. CSLI Publications (1995)
Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eighteenth Symposium on Foundations of Computer Science, pp. 46–57. Providence, RI (1977)
Rabin, M.O.: Decidability of second order theories and automata on infinite trees. American Mathematical Society Transactions 141, 1–35 (1969)
Reynolds, M.: An axiomatization for Until and Since over the reals without the IRR rule. Studia Logica 51, 165–193 (1992)
Reynolds, M.: Continuous Temporal Models. In: Stumptner, M., Corbett, D., Brooks, M.J. (eds.) AI 2001. LNCS (LNAI), vol. 2256, pp. 414–425. Springer, Heidelberg (2001)
Reynolds, M.: The complexity of the temporal logic with ”until” over general linear time. J. Comput. Syst. Sci. 66(2), 393–426 (2003)
Reynolds, M.: Dense time reasoning via mosaics. In: TIME 2009: Proceedings of the 2009 16th International Symposium on Temporal Representation and Reasoning, pp. 3–10. IEEE Computer Society, Washington, DC (2009)
Reynolds, M.: The complexity of the temporal logic over the reals. Annals of Pure and Applied Logic 161(8), 1063–1096 (2010), doi:10.1016/j.apal.2010.01.002
Reynolds, M.: The complexity of temporal logics over linear time. Journal of Studies in Logic 3, 19–50 (2010)
Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)
Stockmeyer, L.: The complexity of decision problems in automata and logic. PhD thesis, M.I.T (1974)
Thomas, W.: On frontiers of regular trees. RAIRO Theoretical Informatics and Applications 20, 371–381 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
French, T., McCabe-Dansted, J., Reynolds, M. (2013). Indiscrete Models: Model Building and Model Checking over Linear Time. In: Lodaya, K. (eds) Logic and Its Applications. ICLA 2013. Lecture Notes in Computer Science, vol 7750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36039-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-36039-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36038-1
Online ISBN: 978-3-642-36039-8
eBook Packages: Computer ScienceComputer Science (R0)