Skip to main content

Indiscrete Models: Model Building and Model Checking over Linear Time

  • Conference paper
Logic and Its Applications (ICLA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7750))

Included in the following conference series:

Abstract

We consider the task of model building and model checking for temporal logic specifications over general linear flows of time.

We present a new notation for giving a detailed description of the compositional construction of such a model and an efficient procedure for finding it from the temporal specification.

We then also present an algorithm for checking whether a particular temporal formula holds in a general linear model.

Applications include reasoning about distributed and concurrent systems, multi-agent systems, and understanding natural language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre Dame J. Formal Logic 26(2), 115–128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burgess, J.P.: Axioms for tense logic I: “Since” and “Until”. Notre Dame J. Formal Logic 23(2), 367–374 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. French, T., McCabe-Dansted, J., Reynolds, M.: Synthesis for temporal logic over the reals. In: AiML 2012, pp. 217–238 (2012)

    Google Scholar 

  4. French, T., McCabe-Dansted, J., Reynolds, M.: Synthesis for general linear time (submitted, 2012)

    Google Scholar 

  5. Gabbay, D.M., Hodkinson, I.M.: An axiomatisation of the temporal logic with until and since over the real numbers. Journal of Logic and Computation 1(2), 229–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabbay, D.M., Hodkinson, I.M., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1. Oxford University Press (1994)

    Google Scholar 

  7. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: 7th ACM Symposium on Principles of Programming Languages, Las Vegas, pp. 163–173 (1980)

    Google Scholar 

  8. Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A Space-Efficient on-the-Fly Algorithm for Real-time Model Checking. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Kamp, H.: Tense logic and the theory of linear order. PhD thesis, University of California, Los Angeles (1968)

    Google Scholar 

  10. Läuchli, H., Leonard, J.: On the elementary theory of linear order. Fundamenta Mathematicae 59, 109–116 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Németi, I.: Decidable versions of first order logic and cylindric-relativized set algebras. In: Csirmaz, L., Gabbay, D., de Rijke, M. (eds.) Logic Colloquium 1992, pp. 171–241. CSLI Publications (1995)

    Google Scholar 

  12. Pnueli, A.: The temporal logic of programs. In: Proceedings of the Eighteenth Symposium on Foundations of Computer Science, pp. 46–57. Providence, RI (1977)

    Google Scholar 

  13. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. American Mathematical Society Transactions 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Reynolds, M.: An axiomatization for Until and Since over the reals without the IRR rule. Studia Logica 51, 165–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reynolds, M.: Continuous Temporal Models. In: Stumptner, M., Corbett, D., Brooks, M.J. (eds.) AI 2001. LNCS (LNAI), vol. 2256, pp. 414–425. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Reynolds, M.: The complexity of the temporal logic with ”until” over general linear time. J. Comput. Syst. Sci. 66(2), 393–426 (2003)

    Article  MATH  Google Scholar 

  17. Reynolds, M.: Dense time reasoning via mosaics. In: TIME 2009: Proceedings of the 2009 16th International Symposium on Temporal Representation and Reasoning, pp. 3–10. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  18. Reynolds, M.: The complexity of the temporal logic over the reals. Annals of Pure and Applied Logic 161(8), 1063–1096 (2010), doi:10.1016/j.apal.2010.01.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Reynolds, M.: The complexity of temporal logics over linear time. Journal of Studies in Logic 3, 19–50 (2010)

    Google Scholar 

  20. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)

    MATH  Google Scholar 

  21. Stockmeyer, L.: The complexity of decision problems in automata and logic. PhD thesis, M.I.T (1974)

    Google Scholar 

  22. Thomas, W.: On frontiers of regular trees. RAIRO Theoretical Informatics and Applications 20, 371–381 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

French, T., McCabe-Dansted, J., Reynolds, M. (2013). Indiscrete Models: Model Building and Model Checking over Linear Time. In: Lodaya, K. (eds) Logic and Its Applications. ICLA 2013. Lecture Notes in Computer Science, vol 7750. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36039-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36039-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36038-1

  • Online ISBN: 978-3-642-36039-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics