Yablo Sequences in Truth Theories

  • Cezary Cieśliński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7750)

Abstract

We investigate the properties of Yablo sentences and formulas in theories of truth. Questions concerning provability of Yablo sentences in various truth systems, their provable equivalence, and their equivalence to the statements of their own untruth are discussed and answered.

Keywords

truth Yablo’s paradox omega-liar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beall, J.C.: Is Yablo’s Paradox Non-circular? Analysis 61, 176–187 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cantini, A.: Notes on Formal Theories of Truth. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, 97–130 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cieśliński, C., Urbaniak, R.: Gödelizing the Yablo Sequence. Journal of Philosophical Logic, doi:10.1007/s10992-012-9244-4Google Scholar
  4. 4.
    Halbach, V.: Axiomatic Theories of Truth. CUP, Cambridge (2011)Google Scholar
  5. 5.
    Ketland, J.: Yablo’s Paradox and ω-Inconsistency. Synthese 145(3), 295–302Google Scholar
  6. 6.
    Kripke, S.: Outline of a Theory of Truth. Journal of Philosophy 72, 690–716 (1975)CrossRefGoogle Scholar
  7. 7.
    Leitgeb, H.: What is a Self-referential Sentence? Critical Remarks on the Alleged (non-)Circularity of Yablo’s Paradox. Logique & Analyse 177-178, 3–14 (2002)MathSciNetGoogle Scholar
  8. 8.
    Priest, G.: Yablo’s Paradox. Analysis 57, 236–242 (1997)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sorensen, R.: Yablo’s Paradox and Kindred Infinite Liars. Mind 107, 137–155 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Urbaniak, R.: Leitgeb, “about”, Yablo. Logique & Analyse 207, 239–254 (2009)MathSciNetGoogle Scholar
  11. 11.
    Visser, A.: Semantics and the liar paradox. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. IV, pp. 617–706. Kluwer Academic Publishers, Dordrecht (1989)CrossRefGoogle Scholar
  12. 12.
    Yablo, S.: Paradox Without Self-reference. Analysis 53, 251–252 (1993)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cezary Cieśliński
    • 1
  1. 1.Institute of PhilosophyThe University of WarsawWarsawPoland

Personalised recommendations