Green Big Data: A Green IT/Green IS Perspective on Big Data

Part of the Environmental Science and Engineering book series (ESE)


Big Data is recently used as a keyword to discuss technologies and methods which should enable the processing of big, fast growing, in many cases weak structured amounts of data, which cannot or limited be analysed with traditional approaches. This publication is aiming at the analysis of connections between concepts which are relevant in the context of Big Data and those, playing a role in Green IS in order to systematically utilize findings from the field of Big Data for Environmental Management Information Systems. We explore in a Green IT perspective, if already resource-efficient Big Data applications are discussed and in how far Big Data concepts can be applied for the design of resource-efficient business processes.


  1. 1.
    Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022Google Scholar
  2. 2.
    Dumbill E (2010) The SMAQ stack for big data.
  3. 3.
    Loukides M (2010) What is data science?
  4. 4.
    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity., McKinsey Global Institute.
  5. 5.
    Madden S (2012) From databases to big data. IEEE Comput 16(3):4–6Google Scholar
  6. 6.
    Laney D (2001) 3D data management: controlling data volume, velocity, and variety.
  7. 7.
    Jacobs A (2009) The pathologies of big data. Commun ACM 52(8):36CrossRefGoogle Scholar
  8. 8.
    Blei DB, Lafferty JD (2009) Topic models. In: Srivastava A, Sahami M (eds) Text mining: classification, clustering, and applications. Chapman and Hall, Boca Raton, pp 71–93Google Scholar
  9. 9.
    Landauer TK, Dumais ST (1997) A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev 104(2):211–240CrossRefGoogle Scholar
  10. 10.
    Chang J (2012) Collapsed Gibbs sampling methods for topic models.
  11. 11.
    Feinerer I (2011) Text mining package.
  12. 12.
    Porter M (1980) An algorithm for suffix stripping. Program 14(3):130–137CrossRefGoogle Scholar
  13. 13.
    Kaushik R, Bhandarkar M (2010) GreenHDFS: towards an energy-conserving storage-efficient, hybrid Hadoop compute cluster. In: Proceedings of the 2010 international conference on power aware computing and systems, pp 1–9Google Scholar
  14. 14.
    Mao Y, Wu W, Zhang H, Luo L (2012) GreenPipe: a Hadoop based workflow system on energy-efficient clouds. In 2012 IEEE 26th international parallel and distributed processing symposium workshops and PhD forum. IEEE, pp 2211–2219Google Scholar
  15. 15.
    Goiri IN, Le K, Nguyen TD, Guitart J, Torres J, Bianchini R (2012) GreenHadoop: leveraging green energy in data-processing frameworks. In: Proceedings of the 7th ACM European conference on computer systems—EuroSys’12. ACM Press, New York, USA, p 57Google Scholar
  16. 16.
    Czajkowski G (2008) Sorting 1 PB with MapReduce.
  17. 17.
    Borthakur D (2008) HDFS architecture guide.
  18. 18.
    Weidema BP, Thrane M, Christensen P, Schmidt J, Lokke S (2008) Carbon footprint: a catalyst for life cycle assessment? J Ind Ecol 12(1):3–6CrossRefGoogle Scholar
  19. 19.
    Funk B, Niemeyer P (2010) Abbildung von Umweltwirkungen in betrieblichen informationssystemen. HMD 274:37–46Google Scholar
  20. 20.
    Möller A (2000) Grundlagen stoffstrombasierter betrieblicher Umweltinformationssysteme. Projektverlag, BochumGoogle Scholar
  21. 21.
    van der Aalst WMP (2012) Process mining. Commun ACM 55(8):76–83CrossRefGoogle Scholar
  22. 22.
    Frischknecht R (2005) Notions on the design and use of an ideal regional or global LCA database. Int J Life Cycle Assess 11(S1):40–48Google Scholar
  23. 23.
    Griffiths T, Steyvers M (2004) Finding scientific topics. Proc Natl Acad Sci USA 101:5228–5235CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Hansmann
    • 1
  • Burkhardt Funk
    • 1
  • Peter Niemeyer
    • 1
  1. 1.Institute of Electronic Business Processes Leuphana University LüneburgLüneburgGermany

Personalised recommendations