Skip to main content

Stammzellen und Tissue Engineering

  • Chapter
Book cover Zell- und Gewebekultur

Zusammenfassung

Stammzellen sind mehr oder minder undifferenzierte Zellen, die im Organismus die Potenz (Fähigkeit) besitzen, in die rund 220 Zellarten der drei Keimblätter des Körpers zu differenzieren (s.u.). Eine besondere Eigenschaft, die Stammzellen auszeichnet, ist die Fähigkeit zur asymmetrischen Zellteilung. Nach einer Zellteilung können entweder beide Tochterzellen als Stammzellen verbleiben, um den internen Stammzellpool aufrechtzuerhalten (self-renewal), oder nur eine Tochterzelle verbleibt als Stammzelle während die andere in einen gewebespezifischen Differenzierungspfad gelenkt wird. Man unterscheidet embryonale und adulte Stammzellen (für Übersichtsarbeiten siehe Czyz et al., 2003; Eckfeldt et al., 2005; Weissmann, 2000; Wobus and Boheler, 2005). Während embryonale Stammzellen in einer kurzen Phase der Embryonalentwicklung (Morulastadium) noch tatsächlich zu allen denkbaren Zellen und sogar in vivo zu einem ganzen Organismus ausdifferenzieren können (totipotent), sind Stammzellen aus dem fertigen Organismus dazu nach dem derzeitigen Stand der Wissenschaften nicht mehr in der Lage (pluripotent und multipotent). Jedoch können solche Stammzellen, die mittlerweile in nahezu allen Geweben gefunden wurden, vielerlei regenerative Aufgaben im Körper erfüllen, indem sie bei Bedarf in die benötigte Differenzierung einmünden. Darüber hinaus wurde entdeckt, dass adulte Stammzellen in einem ausgewachsenen Organismus selbst noch eine hohe Plastizität aufweisen. Darunter versteht man die Fähigkeit einer Zelle, die Gewebegrenzen zu überschreiten und sich in Zellen eines anderen Gewebetyps zu entwickeln (Herzog et al., 2003; Lakshimpathy and Verfaillie, 2005; Wagers and Weissman, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Atala A. and Lanza R.P. (Eds.). Methods of Tissue Engineering. Academic Press, 2002.

    Google Scholar 

  • Aust L., Devlin B., Foster S.J. et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6: 7–14, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bobbert M. Ethical questions concerning research on human embryos, embryonic stem cells and chimeras. Biotechnol. J. 1: 1352–1369, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Boheler K.R., Czyz J., Tweedie D., Yang H.T., Anisimov S.V. and Wobus A.M. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91: 189–201, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D. Haematopoietic stem cells. J. Pathol. 197: 430–440, 2002.

    Article  PubMed  Google Scholar 

  • Broxmeyer H.E., Srour E., Orschell C. et al. Cord blood stem and progenitor cells. Methods Enzymol. 419: 439–473, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Bryder D., Rossi D.J. and Weissman I.L. Hematopoetic stem cells. The paradigmatic tissue-specific stem cell. Am. J. Pathol. 169: 338–346, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Buesen R., Visan A., Genschow E., Slawik B., Spielmann H. and Seiler A. Trends in improving the embryonic stem cell test (EST): an overview. ALTEX 21: 15–22, 2004.

    PubMed  Google Scholar 

  • Clark A.D., Jorgensen H.G., Mountford J. and Holyoake T.L. Isolation and therapeutic potential of human haematopoietic stem cells. Cyto-technology 41: 111–131, 2003.

    Article  Google Scholar 

  • Czyz J., Wiese C., Rolletschek A., Blyszczuk P., Cross M. and Wobus A.M. Potential of embryonic and adult stem cells in vitro. Biol. Chem. 384: 1391–1409,2003.

    Article  PubMed  CAS  Google Scholar 

  • De Coppi P., Bartsch G., Siddiqui M.M. et al. Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnol. 25: 1000–106, 2007.

    Article  Google Scholar 

  • Debnath J. and Brugge J.S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5: 675–688, 2005.

    Article  CAS  Google Scholar 

  • Delo D.M., De Coppi P., Bartsch G. and Atalya A. Amniotic fluid and placental stem cells. Methods Enzymol. 419: 426–438, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Doetschmann T.C., Eistetter H.R., Katz M., Schmidt W. and Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45, 1985.

    Google Scholar 

  • Eckfeldt C.E., Mendenhall E.M. and Verfaillie C.M. The molecular repertoire of the “almighty” stem cell. Nature Rev. Molec. Cell Biol. 6: 726–737, 2005.

    Article  CAS  Google Scholar 

  • Evans M.J. and Kaufmann M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Finney D.G. Probit Analysis. 3rd Ed., Cambridge Universitiy Press, London, 1971.

    Google Scholar 

  • Firmenschrift d. Fa. Miltenyi Biotec GmbH, D-51429 Bergisch-Gladbach, www.miltenyibiotec.com

  • Fuchs E., TumbarT. and Guasch G. Socializing with the neighbours: stem cells and their niche. Cell 116: 769–778, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Genschow E. et al. Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitro Molec. Toxicol. 13:51–65, 2000.

    CAS  Google Scholar 

  • Genschow E., Spielmann H., Scholz G., Seiler A. et al. The ECVAM international validation study on in vitro embryotoxicity tests. Results of the definitive phase and evaluation of prediction models. ATLA 30: 151–176, 2002.

    PubMed  CAS  Google Scholar 

  • Genschow E., Spielmann H., Scholz G., Pohl I., Seiler A., Clemann N., Bremer S. and Becker K. Validation of the embryonic stem cell test (EST) in the international ECVAM validation study of three in vitro embryotoxicity tests. ATLA 32: 209–244, 2004.

    PubMed  CAS  Google Scholar 

  • Gluckman E. Ten years of cord blood transplantiation: from bench to bedside. Br. J. Haematol. 147: 192–199, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F., Boue S. and Belmonte J.C.I. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Rev. Genet. 12: 231–242, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Guan K., Schmidt M.M., Ding Q., Chang H. and Wobus A.M. Embryonic stem cells in vitro — prospects for cell and developmental biology, embryotoxicology and cell therapy. ALTEX 16: 135–141, 1999.

    PubMed  Google Scholar 

  • Hanna J.H., Saha K. and Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143: 508–525, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D., Osafune K., Maehr R. et al. Induction of pluripotent stem cells from primary human fibriblasts with only Oct4 and Sox2. Nature Biotechnol. 26: 1269–1275, 2008.

    Article  CAS  Google Scholar 

  • Herzog E.L., Chai L. and Krause D.S. Plasticity of marrow-derived stem cells. Blood 102: 3483–3493, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Holzhütter H.G. and Quedenau J. Mathematical modelling of cellular response to external signals. J. Biol. Syst. 3: 127–138, 1995.

    Article  Google Scholar 

  • INVITTOX Protocol No. 113. Embryonic Stem Cell Test (EST). The ERGATT/ FRAME Data Bank of In Vitro Techniques in Toxicology, 1996.

    Google Scholar 

  • Janeway C.A., Travers P., Walport M. and Shlomshik M. Immunologie. 5. Aufl., Spektrum, 2002.

    Google Scholar 

  • Jones D.L. and Wagers A.J. No place like home: anatomy and function of the stem cell niche. Nature Rev. Molec. Cell Biol. 9: 11–21, 2008.

    Article  CAS  Google Scholar 

  • Kim K., Doi A., Wen B., Ng K., Zhao R. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467: 285–290, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman H.K., Philp D. and Hoffman M.P. Role of extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14: 526–532, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lako M., Armstrong L. and Stojkovic M. Induced pluripotent stem cells: It looks simple but can looks deceive? Stem Cells 28: 845–850, 2010.

    PubMed  CAS  Google Scholar 

  • Lakshimpathy U. and Verfaillie C. Stem cell plasticitiy. Blood Rev. 19: 29–38, 2005.

    Article  Google Scholar 

  • Lanza R.P., Langer R. and Vacanti J. (Eds.). Principles of Tissue Engineering. 2nd Ed., Academic Press, 2000.

    Google Scholar 

  • Laschinski G., Vogel R. and Spielmann H. Cytotoxicity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reproduc. Toxicol. 5: 57–64, 1991.

    Article  CAS  Google Scholar 

  • Li L. and Xie T. Stem cell niche: Structure and function. Annu. Rev. Cell Dev. Biol. 21: 605–631, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lister R., Pelizzola M., Kida Y.S., Hawkins R.D. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471: 68–73, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Litchfield J.T. and Wilcoxon F. A simplified method for evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96: 99–113, 1949.

    PubMed  CAS  Google Scholar 

  • Lutolf M.P. and Hubbell J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23: 47–55, 2005.

    Article  CAS  Google Scholar 

  • MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 445: 874–880, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Maherali N. and Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3: 595–605, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78: 7634–7638, 1981.

    Article  PubMed  CAS  Google Scholar 

  • McLaren A. A scientist’s view of the ethics of human embryonic stem cell research. Cell Stem Cell 1: 23–26, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Miura M., Gronthos S., Zhao M. et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 100: 5807–5812, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mohammad H.P. and Baylin S.B. Linking cell signaling and the epigenetic machinery. Nature Biotechnol. 28: 1033–1038, 2010.

    Article  CAS  Google Scholar 

  • Moore K.A. and Lemischka I.R. Stem cells and their niches. Science 311: 1880–1885, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M., Kyonagai M., Tanabe K. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. 26: 101–106, 2008.

    Article  CAS  Google Scholar 

  • Nakano T. Haematopoietic stem cells: generation and manipulation. Trends Immunol. 24: 589–594, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S.-I., Jakt L.M. and Era T. Embryonic stem-cell culture as a tool for developmental biology. Nature Rev. Molec. Cell Biol. 8: 502–507, 2007.

    Article  CAS  Google Scholar 

  • Orkin S.H. Diversification of haematopoietic stem cells to specific lineages. Nature Rev. Genet. 1: 57–64, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni F., Reynaud E.G. and Stelzer E.H.K.The third dimension bridges the gap between cell culture and live tissue. Nature Rev. Molec. Cell Biol. 8: 839–845, 2007.

    Article  CAS  Google Scholar 

  • Parolini O., Alviano F., Bagnara G.P. et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26: 300–311, 2008.

    Article  PubMed  Google Scholar 

  • Pellizzer C., Bremer S. and Hartung T. Developmental toxicity testing from animal towards embryonic stem cells. ALTEX 22: 47–56, 2005.

    PubMed  Google Scholar 

  • Piersma A.H., Genschow E., Verhoef A., Spanjersberg M.Q.I., Brown N.A., Brady M., Burns A., Clemann N., Seiler A. and Spielmann H. Validation of the rat postimplantation whole embryo culture test (WEC) in the international ECVAM validation study of three in vitro embryotoxicity tests. ATLA 32: 275–307, 2004.

    PubMed  CAS  Google Scholar 

  • Plath K. and Lowry W.E. Progress in understanding reprogramming to the induced pluripotent state. Nature Rev. Genet. 12: 253–265, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Risbud M.V. and Sittinger M. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol. 20: 351–356, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, V., Morton D.B., Anderson D., Carver J.F.A. et al. Refinement and reduction in production of genetically modified mice. Lab. Animals 37(Suppl. 1), 2003.

    Google Scholar 

  • Rohwedel J., Guan K., Hegert C. and Wobus A.M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol. In Vitro 15: 741–753, 2001.

    Article  CAS  Google Scholar 

  • Rudnicki M.A. and Mc Burney M.W. Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. In: Robertson E. J. (Ed). Teratocarcinoma and Embryonic Stem Cells: A Practical Approach. IRL Press, pp. 19–49, 1987.

    Google Scholar 

  • Sachinidis A., Fleischmann B.K., Kolossov E., Wartenberg M., Sauer H.and Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res. 58: 278–291, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Scadden D.T. The stem-cell niche as an entity of action. Nature 441: 1075–1079, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Schmeichel K.L. and Bissell M.J. Modeling tissue-specific signaling and organ function in three dimensions. J. Cell Sci. 116: 2377–2388, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Schöler H.R. Das Potenzial von Stammzellen. Bundesgesundheitsbl — Gesundheitsforsch — Gesundheitsschutz 47: 565–577, 2004.

    Google Scholar 

  • Scholz G., Genschow E., Pohl I., Bremer S., Paparella M., Raabe H., Southee J. and Spielmann H. Prevalidation of the Embryonic Stem Cell Test (EST) — a new in vitro embryotoxicity test. Toxicol. In Vitro 13: 675–681, 1999.

    Article  CAS  Google Scholar 

  • Seiler A.E. and Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nature Protocols 6: 961–978, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Seiler A., Visan A., Buesen R., Slawik B., Genschow E. and Spielmann H. Improvement of an in vitro stem cell assay (EST) for developmental toxicity by establishing molecular endpoints of tissue-specific development. Reproduc. Toxicol. 18: 231–240, 2004.

    CAS  Google Scholar 

  • Seiler A., Buesen R., Visan A. and Spielmann H. Use of Murine Embryonic Stem Cells in Embryotoxicity Assays: The Embryonic Stem Cell Test. Methods Mol. Biol. 329: 371–395, 2006a.

    CAS  Google Scholar 

  • Seiler A., Buesen R., Hayess K., Schlechter K., Visan A., Genschow E., Slawik B. and Spielmann H. Current status of the embryonic stem cell test. The use of recent advances in the field of stem cell technology and gene expression analysis. ALTEX 23 (Special Issue): 393–399, 2006b.

    Google Scholar 

  • Serafini M. and Verfaillie C.M. Pluripotency in adult stem cells: state of the art. Sem. Reprod. Med. 24: 379–388, 2006.

    Article  CAS  Google Scholar 

  • Shamblott M.J., Axelman J., Wang S., Bugg E.M., Littlefield J.W., Donovan P.J., Blumenthal P.D., Huggins G.R. and Gearhart J.D. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95: 13726–13731, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Siegel N., Rosner M., Hanneder M. et al. Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev. 3: 256–264, 2007.

    Article  PubMed  Google Scholar 

  • Siegel N., Rosner M., Hanneder M. et al. Human amniotic fluid stem cells: a new perspective. Amino Acids 35: 291–293, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Spielmann H., Pohl I., Döring B. and Moldenhauer F. In vitro embryotoxicity assay using two permanent cell lines: mouse embryonic stem cells and 3T3 fibroblasts. Abstracts of the 23. ETS conference 1995, Dublin. Teratology 51: 31A–32A, 1995.

    Google Scholar 

  • Spielmann H., Pohl I., Döring B., Liebsch M. and Moldenhauer F. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines: 3T3 fibroblasts and embryonic stem cells. In Vitro Toxicol. 10: 119–127, 1997.

    CAS  Google Scholar 

  • Spielmann H., Genschow E., Brown N.A., Piersma A.H., Verhoef A., Spanjersberg M.Q.I., Huuskonen H., Paillard F. and Seiler A. Validation of the postimplantation rat limb bud micromass (MM) test in the international ECVAM validation study of three in vitro embryotoxicity tests. ATLA 32: 245–274, 2004.

    PubMed  CAS  Google Scholar 

  • Stadtfeld M. and Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes & Development 24: 2239–2263, 2010.

    Article  CAS  Google Scholar 

  • Stock U.A. and Vacanti J.P. Tissue engineering: Current state and prospects. Annu. Rev. Med. 52: 443–451, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Szilvassy S J. The biology of heatopoietic stem cells. Arch. Med. Res. 34: 446–460, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K. and Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K. and Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872,2007.

    Article  PubMed  CAS  Google Scholar 

  • Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S. and Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Verwei M., van Burgsteden J.A., Krul C.A., van de Sandt J.J. and Freidig A.P. Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol. Lett. 165: 79–87, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wagers A.J. and Weissman I.L. Plasticity of adult stem cells. Cell 116: 639–648, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Watt F.M. and Hogan B.L.M. Out of eden: Stem cells and their niches. Science 287: 1427–1430, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Weissman I.L. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 100: 157–168, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Williams R.L., Hilton D.J., Pease S., Willson T.A., Stewart C.L., Gearing D.P., Wagner E.F., Metcalf D., Nicola N A. and Gough N.M. Myeloid leucemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336: 684–687, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Wilson A. andTrumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Rev. Immunol. 6: 93–106, 2006.

    Article  CAS  Google Scholar 

  • Wobus A.M. and Boheler K.R. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol. Rev. 85: 635–678, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wobus A.M., Wallukat G. and Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48: 173–182, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K.M. and Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell 130: 601–610, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 41(Suppl. 1): 51–56, 2008.

    PubMed  Google Scholar 

  • Yamanaka S. A fresh look at iPS cells. Cell 137: 13–17, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L. Induced pluripotent stem cells derived from human somatic cells. Science 318: 1917–1920, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhao R. and Daley G.Q. From fibroblasts to iPS cells: induced pluripotency by defined factors. J. Cell. Biochem. 105: 949–955, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13: 4279–4295, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7: 211–228, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gstraunthaler, G., Lindl, T. (2013). Stammzellen und Tissue Engineering. In: Zell- und Gewebekultur. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35997-2_21

Download citation

Publish with us

Policies and ethics