Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data

  • Miklos Nagy
  • Maria Vargas-Vera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7123)

Abstract

Term similarity assessment usually leads to situations where contradictory evidence support has different views concerning the meaning of a concept and how similar it is to other concepts. Human experts can resolve their differences through discussion, whereas ontology mapping systems need to be able to eliminate contradictions before similarity combination can achieve high quality results. In these situations, different similarities represent conflicting ideas about the interpreted meaning of the concepts. Such contradictions can contribute to unreliable mappings, which in turn worsen both the mapping precision and recall. In order to avoid including contradictory beliefs in similarities during the combination process, trust in the beliefs needs to be established and untrusted beliefs should be excluded from the combination. In this chapter, we propose a solution for establishing fuzzy trust to manage belief conflicts using a fuzzy voting model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  2. 2.
    Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical Report DISI-08-042, University of Trento (2008)Google Scholar
  3. 3.
    Nagy, M., Vargas-Vera, M., Motta, E.: DSSim - managing uncertainty on the semantic web. In: Proceedings of the 2nd International Workshop on Ontology Matching (2007)Google Scholar
  4. 4.
    Nagy, M., Vargas-Vera, M., Motta, E.: Multi-agent ontology mapping with uncertainty on the semantic web. In: Proceedings of the 3rd IEEE International Conference on Intelligent Computer Communication and Processing (2007)Google Scholar
  5. 5.
    Nagy, M., Vargas-Vera, M., Stolarski, P.: DSSim results for OAEI 2009. In: Proceedings of the 4th International Workshop on Ontology Matching, OM 2009 (2009)Google Scholar
  6. 6.
    Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Technical report, Systems Science and Industrial Engineering Department, Binghamton University (2002)Google Scholar
  7. 7.
    Yager, R.R.: On the dempster-shafer framework and new combination rules. Information Sciences: an International Journal 41, 93–137 (1987)MathSciNetMATHGoogle Scholar
  8. 8.
    Yager, R.R.: Quasi-associative operations in the combination of evidence. Kybernetes 16, 37–41 (1987)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Smarandache, F., Dezert, J. (eds.): Advances and Applications of DSmT for Information Fusion (Collected Works), vol. 1. American Research Press (2004)Google Scholar
  10. 10.
    Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation over ontology correspondences in MAS. In: AAMAS 2007: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Griffiths, N.: A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 360–374. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rehak, M., Pechoucek, M., Benda, P., Foltyn, L.: Trust in coalition environment: Fuzzy number approach. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi Agent Systems - Workshop Trust in Agent Societies, pp. 119–131 (2005)Google Scholar
  14. 14.
    Yamada, K.: A new combination of evidence based on compromise. Fuzzy Sets Syst. 159(13), 1689–1708 (2008)MATHCrossRefGoogle Scholar
  15. 15.
    Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence 141(1), 157–170 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzouvaras, V., Venetis, T.: Resolution of conflicts among ontology mappings: a fuzzy approach. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)Google Scholar
  17. 17.
    Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology mapping. Web Semantics: Science, Services and Agents on the World Wide Web 4, 243–262 (2006)CrossRefGoogle Scholar
  18. 18.
    Liu, X.J., Wang, Y.L., Wang, J.: Towards a semi-automatic ontology mapping - an approach using instance based learning and logic relation mining. In: Fifth Mexican International Conference (MICAI 2006) on Artificial Intelligence (2006)Google Scholar
  19. 19.
    Jean-Mary, Y.R., Kabuka, M.R.: ASMOV: Results for OAEI 2008. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)Google Scholar
  20. 20.
    Beckett, D.: RDF/XML syntax specificationGoogle Scholar
  21. 21.
    McGuinness, D.L., van Harmelen, F.: OWL web ontology languageGoogle Scholar
  22. 22.
    Miles, A., Bechhofer, S.: SKOS simple knowledge organization systemGoogle Scholar
  23. 23.
    Lenzerini, M., Milano, D., Poggi, A.: Ontology representation & reasoning. Technical Report NoE InterOp (IST-508011), WP8, subtask 8.2, Universit di Roma La Sapienza, Roma, Italy (2004)Google Scholar
  24. 24.
    Wang, R.Y., Kon, H.B., Madnick, S.E.: Data quality requirements analysis and modeling. In: Proceedings of the Ninth International Conference on Data Engineering, pp. 670–677 (1993)Google Scholar
  25. 25.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 86–95 (1996)Google Scholar
  26. 26.
    Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)CrossRefGoogle Scholar
  27. 27.
    Baldwin, J.F.: Mass Assignment Fundamentals for Computing with Words. In: L. Ralescu, A. (ed.) IJCAI-WS 1997. LNCS, vol. 1566, pp. 22–44. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Lawry, J.: A voting mechanism for fuzzy logic. International Journal of Approximate Reasoning 19, 315–333 (1998)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Miklos Nagy
    • 1
  • Maria Vargas-Vera
    • 2
  1. 1.Knowledge Media Institute (KMi)The Open UniversityMilton KeynesUnited Kingdom
  2. 2.Facultad de Ingenieria y Ciencias Centro de Investigaciones en Informatica y TelecomunicacionesUniversidad Adolfo IbanezChile

Personalised recommendations