Skip to main content

Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7123))

Abstract

Term similarity assessment usually leads to situations where contradictory evidence support has different views concerning the meaning of a concept and how similar it is to other concepts. Human experts can resolve their differences through discussion, whereas ontology mapping systems need to be able to eliminate contradictions before similarity combination can achieve high quality results. In these situations, different similarities represent conflicting ideas about the interpreted meaning of the concepts. Such contradictions can contribute to unreliable mappings, which in turn worsen both the mapping precision and recall. In order to avoid including contradictory beliefs in similarities during the combination process, trust in the beliefs needs to be established and untrusted beliefs should be excluded from the combination. In this chapter, we propose a solution for establishing fuzzy trust to manage belief conflicts using a fuzzy voting model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  2. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical Report DISI-08-042, University of Trento (2008)

    Google Scholar 

  3. Nagy, M., Vargas-Vera, M., Motta, E.: DSSim - managing uncertainty on the semantic web. In: Proceedings of the 2nd International Workshop on Ontology Matching (2007)

    Google Scholar 

  4. Nagy, M., Vargas-Vera, M., Motta, E.: Multi-agent ontology mapping with uncertainty on the semantic web. In: Proceedings of the 3rd IEEE International Conference on Intelligent Computer Communication and Processing (2007)

    Google Scholar 

  5. Nagy, M., Vargas-Vera, M., Stolarski, P.: DSSim results for OAEI 2009. In: Proceedings of the 4th International Workshop on Ontology Matching, OM 2009 (2009)

    Google Scholar 

  6. Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Technical report, Systems Science and Industrial Engineering Department, Binghamton University (2002)

    Google Scholar 

  7. Yager, R.R.: On the dempster-shafer framework and new combination rules. Information Sciences: an International Journal 41, 93–137 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Yager, R.R.: Quasi-associative operations in the combination of evidence. Kybernetes 16, 37–41 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Smarandache, F., Dezert, J. (eds.): Advances and Applications of DSmT for Information Fusion (Collected Works), vol. 1. American Research Press (2004)

    Google Scholar 

  10. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Laera, L., Blacoe, I., Tamma, V., Payne, T., Euzenat, J., Bench-Capon, T.: Argumentation over ontology correspondences in MAS. In: AAMAS 2007: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8. ACM, New York (2007)

    Chapter  Google Scholar 

  12. Griffiths, N.: A Fuzzy Approach to Reasoning with Trust, Distrust and Insufficient Trust. In: Klusch, M., Rovatsos, M., Payne, T.R. (eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 360–374. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Rehak, M., Pechoucek, M., Benda, P., Foltyn, L.: Trust in coalition environment: Fuzzy number approach. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multi Agent Systems - Workshop Trust in Agent Societies, pp. 119–131 (2005)

    Google Scholar 

  14. Yamada, K.: A new combination of evidence based on compromise. Fuzzy Sets Syst. 159(13), 1689–1708 (2008)

    Article  MATH  Google Scholar 

  15. Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence 141(1), 157–170 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ferrara, A., Lorusso, D., Stamou, G., Stoilos, G., Tzouvaras, V., Venetis, T.: Resolution of conflicts among ontology mappings: a fuzzy approach. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)

    Google Scholar 

  17. Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology mapping. Web Semantics: Science, Services and Agents on the World Wide Web 4, 243–262 (2006)

    Article  Google Scholar 

  18. Liu, X.J., Wang, Y.L., Wang, J.: Towards a semi-automatic ontology mapping - an approach using instance based learning and logic relation mining. In: Fifth Mexican International Conference (MICAI 2006) on Artificial Intelligence (2006)

    Google Scholar 

  19. Jean-Mary, Y.R., Kabuka, M.R.: ASMOV: Results for OAEI 2008. In: Proceedings of the 3rd International Workshop on Ontology Matching (2008)

    Google Scholar 

  20. Beckett, D.: RDF/XML syntax specification

    Google Scholar 

  21. McGuinness, D.L., van Harmelen, F.: OWL web ontology language

    Google Scholar 

  22. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system

    Google Scholar 

  23. Lenzerini, M., Milano, D., Poggi, A.: Ontology representation & reasoning. Technical Report NoE InterOp (IST-508011), WP8, subtask 8.2, Universit di Roma La Sapienza, Roma, Italy (2004)

    Google Scholar 

  24. Wang, R.Y., Kon, H.B., Madnick, S.E.: Data quality requirements analysis and modeling. In: Proceedings of the Ninth International Conference on Data Engineering, pp. 670–677 (1993)

    Google Scholar 

  25. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 86–95 (1996)

    Google Scholar 

  26. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Computing Surveys 18(4), 323–364 (1986)

    Article  Google Scholar 

  27. Baldwin, J.F.: Mass Assignment Fundamentals for Computing with Words. In: L. Ralescu, A. (ed.) IJCAI-WS 1997. LNCS, vol. 1566, pp. 22–44. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  28. Lawry, J.: A voting mechanism for fuzzy logic. International Journal of Approximate Reasoning 19, 315–333 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagy, M., Vargas-Vera, M. (2013). Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data. In: Bobillo, F., et al. Uncertainty Reasoning for the Semantic Web II. URSW URSW URSW UniDL 2010 2009 2008 2010. Lecture Notes in Computer Science(), vol 7123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35975-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35975-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35974-3

  • Online ISBN: 978-3-642-35975-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics