Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil

  • Rommel N. Carvalho
  • Shou Matsumoto
  • Kathryn B. Laskey
  • Paulo C. G. Costa
  • Marcelo Ladeira
  • Laécio L. Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7123)

Abstract

To cope with citizens’ demand for transparency and corruption prevention, the Brazilian Office of the Comptroller General (CGU) has carried out a number of actions, including: awareness campaigns aimed at the private sector; campaigns to educate the public; research initiatives; and regular inspections and audits of municipalities and states. Although CGU has collected information from hundreds of different sources - Revenue Agency, Federal Police, and others - the process of fusing all this data has not been efficient enough to meet the needs of CGU’s decision makers. Therefore, it is natural to change the focus from data fusion to knowledge fusion. As a consequence, traditional syntactic methods should be augmented with techniques that represent and reason with the semantics of databases. However, commonly used approaches, such as Semantic Web technologies, fail to deal with uncertainty, a dominant characteristic in corruption prevention. This paper presents the use of probabilistic ontologies built with Probabilistic OWL (PR-OWL) to design and test a model that performs information fusion to detect possible frauds in procurements involving Federal money in Brazil. To design this model, a recently developed tool for creating PR-OWL ontologies was used with support from PR-OWL specialists and careful guidance from a fraud detection specialist from CGU. At present, the task of procurement fraud detection is done manually by an auditor. The number of suspicious cases that can be analyzed by a single person is small. The experimental results obtained with the presented approach are preliminary, but show the viability of developing a tool based on PR-OWL ontologies to automatize this task. This paper also examplifies how to use PR-OWL 2.0 to provide a link between the deterministic and probabilistic parts of the ontology.

Keywords

Probabilistic Ontology PR-OWL Ontology Procurement Fraud Detection Fraud Prevention Knowledge Fusion MEBN UnBBayes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allemang, D., Hendler, J.A.: Semantic Web for the Working Ontologist. Morgan Kaufmann (2008)Google Scholar
  2. 2.
    Carvalho, R.N.: Probabilistic Ontology: Representation and Modeling Methodology. PhD, George Mason University, Fairfax, VA, USA (2011)Google Scholar
  3. 3.
    Carvalho, R.N., Haberlin, R., Costa, P.C.G., Laskey, K.B., Chang, K.-C.: Modeling a probabilistic ontology for maritime domain awareness. In: Proceedings of the 14th International Conference on Information Fusion, Chicago, USA (July 2011)Google Scholar
  4. 4.
    Carvalho, R.N., Laskey, K.B., Costa, P.C.G.: Compatibility formalization between PR-OWL and OWL. In: Proceedings of the First International Workshop on Uncertainty in Description Logics (UniDL) on Federated Logic Conference (FLoC) 2010, Edinburgh, UK (July 2010)Google Scholar
  5. 5.
    Carvalho, R.N., Laskey, K.B., Costa, P.C.G.: PR-OWL 2.0 - Bridging the Gap to OWL Semantics. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS (LNAI), vol. 7123, pp. 1–18. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Chen, H., Wu, Z.: On Case-Based knowledge sharing in semantic web. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2003, pp. 200–207. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Wu, Z., Xu, J.: KB-Grid: enabling knowledge sharing on the semantic web. In: International Workshop on Challenges of Large Applications in Distributed Environments, p. 70. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  8. 8.
    Costa, P.C.G.: Bayesian Semantics for the Semantic Web. PhD, George Mason University, Fairfax, VA, USA (July 2005)Google Scholar
  9. 9.
    Costa, P.C.G., Chang, K.-C., Laskey, K.B., Carvalho, R.N.: High level fusion and predictive situational awareness with probabilistic ontologies. In: Proceedings of the AFCEA-GMU C4I Center Symposium, George Mason University, Fairfax, VA, USA (May 2010)Google Scholar
  10. 10.
    Costa, P.C.G., Laskey, K.B., Laskey, K.J.: Probabilistic ontologies for efficient resource sharing in semantic web services. In: Proceedings of the Second Workshop on Uncertainty Reasoning for the Semantic Web, URSW 2006, Athens, GA, USA (November 2006)Google Scholar
  11. 11.
    Costa, P.C.G., Laskey, K.B., Takikawa, M., Pool, M., Fung, F., Wright, E.J.: MEBN logic: A key enabler for network centric warfare. In: Proceedings of the 10th International Command and Control Research and Technology Symposium, 10th ICCRTS. CCRP Publications, McLean (2005)Google Scholar
  12. 12.
    Costa, P.C.G., Chang, K.-C., Laskey, K.B., Carvalho, R.N.: A Multi-Disciplinary approach to high level fusion in predictive situational awareness. In: Proceedings of the 12th International Conference on Information Fusion, Seattle, Washington, USA, pp. 248–255 (July 2009)Google Scholar
  13. 13.
    Dadzie, A.-S., Bhagdev, R., Chakravarthy, A., Chapman, S., Iria, J., Lanfranchi, V., Magalhães, J., Petrelli, D., Ciravegna, F.: Applying semantic web technologies to knowledge sharing in aerospace engineering. Journal of Intelligent Manufacturing 20(5), 611–623 (2008)Google Scholar
  14. 14.
    Jensen, F., Jensen, F.V., Dittmer, S.L.: From influence diagrams to junction trees. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (1994)Google Scholar
  15. 15.
    Kings, N.J., Davies, J.: Semantic web for knowledge sharing. In: Semantic Knowledge Management, pp. 103–111. Springer, Heidelberg (2009), doi:10.1007/978-3-540-88845-1_8CrossRefGoogle Scholar
  16. 16.
    Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Laskey, K.B., Costa, P.C.G.: Of starships and klingons: Bayesian logic for the 23rd century. In: Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence, UAI 2005. AUAI Press, Arlington (2005)Google Scholar
  18. 18.
    Laskey, K.B., Costa, P.C.G., Wright, E.J., Laskey, K.J.: Probabilistic ontology for Net-Centric fusion. In: Proceedings of the 10th International Conference on Information Fusion, pp. 1–8 (2007)Google Scholar
  19. 19.
    Laskey, K.B., Mahoney, S.M., Wright, E.: Hypothesis management in Situation-Specific network construction. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, UAI 2001, pp. 301–309. Morgan Kaufmann Publishers Inc., San Francisco (2001), ACM ID: 720228Google Scholar
  20. 20.
    Laskey, K.B.: MEBN: a language for First-Order bayesian knowledge bases. Artificial Intelligence 172(2-3), 140–178 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Laskey, K.B., da Costa, P.C.G., Janssen, T.: Probabilistic ontologies for knowledge fusion. In: Proceedings of the 11th International Conference on Information Fusion, pp. 1–8 (2008)Google Scholar
  22. 22.
    Laskey, K.B., da Costa, P.C.G., Janssen, T.: Probabilistic ontologies for Multi-INT fusion. Technical report, George Mason University C4I Center (May 2008)Google Scholar
  23. 23.
    Laskey, K., Laskey, K.B.: Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group. URW3-XG, W3C (2008)Google Scholar
  24. 24.
    Mahoney, S., Laskey, K.B.: Constructing situation specific belief networks. In: Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence, UAI 1998. Morgan Kaufmann, San Francisco (1998)Google Scholar
  25. 25.
    Matsumoto, S.: Framework Based in Plug-ins for Reasoning with Probabilistic Ontologies. M.Sc., University of Brasília, Brasilia, Brazil (forthcoming)Google Scholar
  26. 26.
    Matsumoto, S., Carvalho, R.N., Ladeira, M., da Costa, P.C.G., Santos, L.L., Silva, D., Onishi, M., Machado, E., Cai, K.: UnBBayes: a java framework for probabilistic models in AI. In: Java in Academia and Research. iConcept Press (2011)Google Scholar
  27. 27.
    Poole, D., Smyth, C., Sharma, R.: Semantic Science: Ontologies, Data and Probabilistic Theories. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 26–40. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Veres, G.V., Huynh, T.D., Nixon, M.S., Smart, P.R., Shadbolt, N.R.: The military knowledge information fusion via semantic web technologies. Technical report, School of Electronics and Computer Science, University of Southampton (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rommel N. Carvalho
    • 1
  • Shou Matsumoto
    • 1
  • Kathryn B. Laskey
    • 1
  • Paulo C. G. Costa
    • 1
  • Marcelo Ladeira
    • 2
  • Laécio L. Santos
    • 2
  1. 1.Department of SEOR / Center of Excellence in C4IGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Computer ScienceUniversity of Brasilia, Campus Universitario Darcy RibeiroBrasiliaBrazil

Personalised recommendations