Assertion Prediction with Ontologies through Evidence Combination

  • Giuseppe Rizzo
  • Claudia d’Amato
  • Nicola Fanizzi
  • Floriana Esposito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7123)

Abstract

Following previous works on inductive methods for ABox reasoning, we propose an alternative method for predicting assertions based on the available evidence and the analogical criterion. Once neighbors of a test individual are selected through some distance measures, a combination rule descending from the Dempster-Shafer theory can join together the evidence provided by the various neighbor individuals in order to predict unknown values in a learning problem. We show how to exploit the procedure in the problems of determining unknown class- and role-memberships or fillers for datatype properties which may be the basis for many further ABox inductive reasoning algorithms. This work presents also an empirical evaluation of the method on real ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press (2003)Google Scholar
  2. 2.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, pp. 230–235 (2007)Google Scholar
  3. 3.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: A family of scalable semantic repositories. Semantic Web 2(1), 33–42 (2011)Google Scholar
  4. 4.
    Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description logics. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Working Notes of the International Description Logics Workshop, Edinburgh, UK. CEUR Workshop Proceedings, vol. 147 (2005)Google Scholar
  5. 5.
    d’Amato, C., Fanizzi, N., Esposito, F.: Analogical Reasoning in Description Logics. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 330–347. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    d’Amato, C., Fanizzi, N., Esposito, F.: Query Answering and Ontology Population: An Inductive Approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    d’Amato, C., Staab, S., Fanizzi, N.: On the Influence of Description Logics Ontologies on Conceptual Similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics 25(5), 804–813 (1995)CrossRefGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: On the combination of evidence in various mathematical frameworks. In: Flamm, J., Luisi, T. (eds.) Reliability Data Collection and Analysis, pp. 213–241. Springer (1992)Google Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)Google Scholar
  11. 11.
    Fanizzi, N., d’Amato, C., Esposito, F.: Approximate Measures of Semantic Dissimilarity under Uncertainty. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 348–365. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fanizzi, N., d’Amato, C., Esposito, F.: Statistical Learning for Inductive Query Answering on OWL Ontologies. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 195–212. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Fanizzi, N., d’Amato, C., Esposito, F.: Metric-based stochastic conceptual clustering for ontologies. Information Systems 34(8), 725–739 (2009)CrossRefGoogle Scholar
  14. 14.
    Fanizzi, N., d’Amato, C., Esposito, F.: Evidential nearest-neighbors classification for inductive abox reasoning. In: Bobillo, F., et al. (eds.) Proceedings of the 5th International Workshop on Uncertainty Reasoning for the Semantic Web, URSW 2009. CEUR Workshop Proceedings, vol. 527, pp. 27–38. CEUR-WS.org (2009)Google Scholar
  15. 15.
    Goldstone, R., Medin, D., Halberstadt, J.: Similarity in context. Memory and Cognition 25(2), 237–255 (1997)CrossRefGoogle Scholar
  16. 16.
    Harmanec, D., Klir, G., Wang, Z.: Modal logic interpretation of Dempster-Shafer theory: An infinite case. International Journal of Approximate Reasoning 14(2-3), 81–93 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning – Data Mining, Inference, and Prediction, 2nd edn. Springer (2009)Google Scholar
  18. 18.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning with large numbers of individuals. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 Description Logic Workshop, DL 2004. CEUR Workshop Proceedings, vol. 104, pp. 31–40. CEUR (2004)Google Scholar
  19. 19.
    Janowicz, K., Wilkes, M.: SIM-DLA: A Novel Semantic Similarity Measure for Description Logics Reducing Inter-concept to Inter-instance Similarity. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 353–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Klir, G.: Uncertainty and Information. Wiley (2006)Google Scholar
  21. 21.
    Laskey, K., Laskey, K., Costa, P., Kokar, M., Martin, T., Lukasiewicz, T.: Uncertainty Reasoning for the World Wide Web. W3C Incubator Group (2008), http://www.w3.org/2005/Incubator/urw3/XGR-urw3-20080331/
  22. 22.
    Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Using the Dempster-Shafer Theory of Evidence to Resolve ABox Inconsistencies. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 143–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Qi, G., Pan, J., Ji, Q.: A possibilistic extension of description logics. In: Calvanese, D., et al. (eds.) Working Notes of the 20th International Description Logics Workshop, DL 2007, Bressanone, Italy. CEUR Workshop Proceedings, vol. 250, pp. 435–442 (2007)Google Scholar
  24. 24.
    Rettinger, A., Nickles, M.: Infinite hidden semantic models for learning with OWL DL. In: d’Amato, C., et al. (eds.) Proceedings of 1st ESWC Workshop on Inductive Reasoning and Machine Learning for the Semantic Web, IRMLeS 2009, Heraklion, Greece. CEUR Workshop Proceedings, vol. 474 (2009)Google Scholar
  25. 25.
    Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: Prediction of class and property assertions on OWL ontologies through evidence combination. In: Akerkar, R. (ed.) Proceedings of the International Conference on Web Intelligence, Mining and Semantics, WIMS 2011, p. 45. ACM (2011)Google Scholar
  26. 26.
    Sebag, M.: Distance Induction in First Order Logic. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 264–272. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. 27.
    Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory. Technical Report SAND2002-0835, SANDIATech (April 2002)Google Scholar
  28. 28.
    Tresp, V., Huang, Y., Bundschus, M., Rettinger, A.: Materializing and querying learned knowledge. In: d’Amato, C., et al. (eds.) Proceedings of 1st ESWC Workshop on Inductive Reasoning and Machine Learning for the Semantic Web, IRMLeS 2009, Heraklion, Greece. CEUR Workshop Proceedings, vol. 474 (2009)Google Scholar
  29. 29.
    Yager, R.: On the Dempster-Shafer framework and new combination rules. Information Sciences 41, 93–137 (1987)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Younes, Z., Abdallah, F., Denœux, T.: An Evidence-Theoretic k-Nearest Neighbor Rule for Multi-label Classification. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 297–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giuseppe Rizzo
    • 1
  • Claudia d’Amato
    • 1
  • Nicola Fanizzi
    • 1
  • Floriana Esposito
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli studi di BariItaly

Personalised recommendations