Ontology Enhancement through Inductive Decision Trees

  • Bart Gajderowicz
  • Alireza Sadeghian
  • Mikhail Soutchanski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7123)

Abstract

The popularity of ontologies for representing the semantics behind many real-world domains has created a growing pool of ontologies on various topics. Different ontologists, experts, and organizations create a great variety of ontologies, often for narrow application domains. Some of the created ontologies frequently overlap with other ontologies in broader domains if they pertain to the Semantic Web. Sometimes, they model similar or matching theories that may be inconsistent. To assist in the reuse of these ontologies, this paper describes a technique for enriching manually created ontologies by supplementing them with inductively derived rules, and reducing the number of inconsistencies. The derived rules are translated from decision trees with probability measures, created by executing a tree based data mining algorithm over the data being modelled. These rules can be used to revise an ontology in order to extend the ontology with definitions grounded in empirical data, and identify possible similarities between complementary ontologies. We demonstrate the application of our technique by presenting an example, and discuss how various data types may be treated to generalize the semantics of an ontology for a broader application domain.

Keywords

probabilistic ontology extending ontologies decision trees 

References

  1. 1.
    Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2rdf: towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5), 706–716 (2008)CrossRefGoogle Scholar
  2. 2.
    Bittner, T., Smith, B.: Granular partitions and vagueness. In: FOIS 2001: Proceedings of the International Conference on Formal Ontology in Information Systems, pp. 309–320. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Bouza, A., Reif, G., Bernstein, A., Gall, H.: Semtree: Ontology-based decision tree algorithm for recommender systems. In: 7th International Semantic Web Conference, ISWC 2008, Germany (October 2008)Google Scholar
  4. 4.
    Brodaric, M., Gahegan, M.: Experiments to examine the situated nature of geoscientific concepts. Spatial Cognition and Computation: An Interdisciplinary Journal 7(1), 61–95 (2007)CrossRefGoogle Scholar
  5. 5.
    Chepelev, L., Klassen, D., Dumontier, M.: Chemical hazard estimation and method comparison with owl-encoded toxicity decision trees. In: OWLED 2011 OWL: Experiences and Directions (June 2011)Google Scholar
  6. 6.
    Chien, B.-C., Lu, C.-F., Hsu, S.-J.: Handling incomplete quantitative data for supervised learning based on fuzzy entropy. In: 2005 IEEE International Conference on Granular Computing, vol. 1, pp. 135–140 (July 2005)Google Scholar
  7. 7.
    da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian Ontology Language for the Semantic Web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty Modeling in Semantic Web Ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web. STUDFUZZ, vol. 204, pp. 3–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ding, Z., Peng, Y., Pan, R., Yu, Y.: A bayesian methodology towards automatic ontology mapping. In: Proceedings of the AAAI 2005 C&O Workshop on Contexts and Ontologies: Theory, Practice and Applications, pp. 72–79. AAAI Press (July 2005)Google Scholar
  10. 10.
    Erdur, C., Seylan, I.: The design of a semantic web compatible content language for agent communication. Expert Systems 25(3), 268–294 (2008)CrossRefGoogle Scholar
  11. 11.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag New York, Secaucus (2007)MATHGoogle Scholar
  12. 12.
    Falconer, S.M., Noy, N.F., Storey, M.A.: Ontology mapping - a user survey. In: Proceedings of the Workshop on Ontology Matching, OM 2007, pp. 113–125. ISWC/ASWC (2007)Google Scholar
  13. 13.
    Fanizzi, N., d’Amato, C., Esposito, F.: Towards the induction of terminological decision trees. In: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp. 1423–1427. ACM, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Fellbaum, C.: Wordnet: An electronic lexical database (1998)Google Scholar
  15. 15.
    Gajderowicz, B.: Using decision trees for inductively driven semantic integration and ontology matching. Master’s thesis, Ryerson University, 250 Victoria Street, Toronto, Ontario, Canada (2011)Google Scholar
  16. 16.
    Giugno, R., Lukasiewicz, T.: P-\(\mathcal{SHOQ}({\bf D})\): A Probabilistic Extension of \(\mathcal{SHOQ}({\bf D})\) for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible sroiq. In: Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2006, pp. 57–67. AAAI Press (June 2006)Google Scholar
  18. 18.
    Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From shiq and rdf to owl: The making of a web ontology language. Journal of Web Semantics 1, 7–26 (2003)CrossRefGoogle Scholar
  19. 19.
    Horrocks, I., Sattler, U.: Ontology reasoning in the shoq(d) description logic. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, IJCAI 2001, pp. 199–204. Morgan Kaufmann (2001)Google Scholar
  20. 20.
    Kieler, B.: Semantic data integration across different scales: Automatic learning generalization rules. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 37 (2008)Google Scholar
  21. 21.
    Kieler, B., Huang, W., Haunert, J.H., Jiang, J.: Matching river datasets of different scales. In: AGILE Conf. Lecture Notes in Geoinformation and Cartography, pp. 135–154. Springer (2009)Google Scholar
  22. 22.
    Klinov, P., Mazlack, L.J.: Granulating semantic web ontologies. In: 2006 IEEE International Conference on Granular Computing, pp. 431–434 (2006)Google Scholar
  23. 23.
    Krotzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In: Proceeding of the 2008 Conference on ECAI 2008, pp. 80–84. IOS Press, Amsterdam (2008)Google Scholar
  24. 24.
    Kwok, R.B.H.: Translations of Ripple Down Rules into Logic Formalisms. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 366–379. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Pan, J.Z., Horrocks, I.: Reasoning in the shoq(dn) description logic. In: Proc. of the 2002 Int. Workshop on Description Logics, DL 2002 (April 2002)Google Scholar
  26. 26.
    Sikder, I.U., Munakata, T.: Application of rough set and decision tree for characterization of premonitory factors of low seismic activity. Expert Systems with Applications 36(1), 102–110 (2009)CrossRefGoogle Scholar
  27. 27.
    Staab, S., Studer, R.: Handbook on Ontologies. International Handbooks on Information Systems. Springer (2004)Google Scholar
  28. 28.
    Straccia, U.: A fuzzy description logic. In: 15th National Conference on Artificial Intelligence, Madison, USA, vol. 4, pp. 594–599 (1998)Google Scholar
  29. 29.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  30. 30.
    Straccia, U.: A fuzzy description logic for the semantic web. In: Fuzzy Logic and the Semantic Web, Capturing Intelligence, vol. 4, pp. 167–181. Elsevier (2005)Google Scholar
  31. 31.
    Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)MATHGoogle Scholar
  32. 32.
    Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)Google Scholar
  33. 33.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Zadeh, L.A.: Fuzzy sets, fuzzy logic, and fuzzy systems. World Scientific Publishing Co., Inc., River Edge (1996)MATHGoogle Scholar
  35. 35.
    Zhang, J., Silvescu, A., Honavar, V.: Ontology-Driven Induction of Decision Trees at Multiple Levels of Abstraction. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 316–323. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bart Gajderowicz
    • 1
  • Alireza Sadeghian
    • 1
  • Mikhail Soutchanski
    • 1
  1. 1.Computer Science DepartmentRyerson UniversityTorontoCanada

Personalised recommendations