A Fuzzy Logic-Based Approach to Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension

  • Jidi Zhao
  • Harold Boley
  • Jing Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7123)

Abstract

The Rule Interchange Format (RIF) is a W3C recommendation that allows rules to be exchanged between rule systems. Uncertainty is an intrinsic feature of real world knowledge, hence it is important to take it into account when building logic rule formalisms. However, the set of truth values in the RIF Basic Logic Dialect (RIF-BLD) currently consists of only two values (t and f), although the RIF Framework for Logic Dialects (RIF-FLD) allows for more. In this paper, we first present two techniques of encoding uncertain knowledge and its fuzzy semantics in RIF-BLD presentation syntax. We then propose an extension leading to an Uncertainty Rule Dialect (RIF-URD) to support a direct representation of uncertain knowledge. In addition, rules in Logic Programs (LP) are often used in combination with the other widely-used knowledge representation formalism of the Semantic Web, namely Description Logics (DL), in many application scenarios of the Semantic Web. To prepare DL as well as LP extensions, we present a fuzzy extension to Description Logic Programs (DLP), called Fuzzy DLP, and discuss its mapping to RIF. Such a formalism not only combines DL with LP, as in DLP, but also supports uncertain knowledge representation.

Keywords

Rule Interchange Format Uncertainty Fuzzy Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baaz, M.: Infinite-valued gödel logic with 0-1-projections and relativisations. In: Hájek, P. (ed.) Gödel 1996: Logical Foundations of Mathematics, Computer Science, and Physics. Lecture Notes in Logic, vol. 6, pp. 23–33. Springer, Brno (1996)Google Scholar
  2. 2.
    Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner. In: Proceedings of the 2008 International Conference on Fuzzy Systems, FUZZ 2008 (2008)Google Scholar
  3. 3.
    Boley, H., Kifer, M.: A Guide to the Basic Logic Dialect for Rule Interchange on the Web. IEEE Transactions on Knowledge and Data Engineering 22(11), 1593–1608 (2010)CrossRefGoogle Scholar
  4. 4.
    Boley, H., Kifer, M.: RIF Basic Logic Dialect. Tech. Rep. W3C Recommendation (June 30, 2010), http://www.w3.org/TR/rif-bld/
  5. 5.
    Boley, H., Kifer, M.: RIF Framework for Logic Dialects. Tech. Rep. W3C Recommendation (June 30, 2010), http://www.w3.org/TR/rif-fld/
  6. 6.
    Damásio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: Representing uncertainty in ruleml. Fundamenta Informaticae 82, 1–24 (2008)Google Scholar
  7. 7.
    Damásio, C.V., Pereira, L.M.: Monotonic and Residuated Logic Programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Díaz, S., De Baets, B., Montes, S.: General results on the decomposition of transitive fuzzy relations. Fuzzy Optimization and Decision Making 9(1), 1–29 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Al-log: Integrating datalog and description logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  10. 10.
    Dummett, M.: A propositional calculus with denumerable matrix. Journal of Symbolic Logic 24(2), 97–106 (1959)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proceedings of the 12th International Conference on World Wide Web, pp. 48–57 (2003)Google Scholar
  12. 12.
    Hájek, P.: Fuzzy Logic from the Logical Point of View. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012, pp. 31–49. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  13. 13.
    Hájek, P.: Metamathematics of fuzzy logic. Kluwer (1998)Google Scholar
  14. 14.
    Hájek, P.: Fuzzy logic and arithmetical hierarchy iii. Studia Logica 68(1), 129–142 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hall, V.: Uncertainty-valued horn clauses. Tech. Rep. (1994), http://www.dfki.uni-kl.de/~vega/relfun+/fuzzy/fuzzy.ps
  16. 16.
    Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28(1), 77–86 (1963)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: Owl rules: A proposal and prototype implementation. Journal of Web Semantics 3(1), 23–40 (2005)CrossRefGoogle Scholar
  18. 18.
    Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning, KR 1994, pp. 305–316 (1994)Google Scholar
  19. 19.
    Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI 1997, pp. 390–397 (1997)Google Scholar
  20. 20.
    Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Martin, T., Lukasiewicz, T.: W3C incubator group report. Tech. Rep. W3C (March 05, 2008), http://www.w3.org/2005/Incubator/urw3/wiki/DraftFinalReport
  21. 21.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. Journal of Web Semantics (2008)Google Scholar
  22. 22.
    Mei, J., Boley, H., Li, J., Bharvsar, V.C.: The datalogdl combination of deduction rules and description logics. Computational Intelligence 23(3), 356–372 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. Web Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)CrossRefGoogle Scholar
  24. 24.
    Novák, V., Perfilieva, I., Mockor, J.: Mathematical principles of fuzzy logic. Kluwer Academic, Dodrecht (1999)MATHCrossRefGoogle Scholar
  25. 25.
    Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0, W3C Recommendation (June 2010), http://www.w3.org/TR/rif-dtb
  26. 26.
    Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. Journal of Artificial Intelligence Research 30, 273–320 (2007)MathSciNetMATHGoogle Scholar
  27. 27.
    Straccia, U.: A fuzzy description logic. In: Proceedings of the 15th National Conference on Artificial Intelligence, AAAI 1998, pp. 594–599 (1998)Google Scholar
  28. 28.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  29. 29.
    Straccia, U.: Fuzzy description logic with concrete domains. Tech. Rep. Technical Report 2005-TR-03, Istituto di Elaborazione dell’Informazione (2005)Google Scholar
  30. 30.
    Straccia, U.: Fuzzy description logic programs. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2006, pp. 1818–1825 (2006)Google Scholar
  31. 31.
    van Emden, M.: Quantitative deduction and its fixpoint theory. Journal of Logic Programming 30(1), 37–53 (1986)CrossRefGoogle Scholar
  32. 32.
    Venetis, T., Stoilos, G., Stamou, G., Kollias, S.: f-dlps: Extending description logic programs with fuzzy sets and fuzzy logic. In: IEEE International Fuzzy Systems Conference, FUZZ-IEEE 2007, pp. 1–6 (2007) ID: 1Google Scholar
  33. 33.
    Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2004)CrossRefGoogle Scholar
  34. 34.
    Vojtás, P., Paulík, L.: Soundness and Completeness of Non-Classical Extended SLD-Resolution. In: Herre, H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050, pp. 289–301. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  35. 35.
    Wang, H.-F.: Comparative studies on fuzzy t-norm operators. BUSFEL 50, 16–24 (1992)Google Scholar
  36. 36.
    Yager, R.R., Filev, D.P.: Generalizing the modeling of fuzzy logic controllers by parameterized aggregation operators. Fuzzy Sets and Systems 70, 303–313 (1995)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Zhao, J., Boley, H.: Combining fuzzy description logics and fuzzy logic programs. In: Web Intelligence/IAT Workshops, pp. 273–278. IEEE (2008)Google Scholar
  39. 39.
    Zhao, J., Boley, H.: Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension. In: URSW, vol. 423. CEUR-WS.org (2008)Google Scholar
  40. 40.
    Zhao, J., Boley, H.: Knowledge Representation and Reasoning in Norm-Parameterized Fuzzy Description Logics. In: Canadian Semantic Web: Technologies and Applications, pp. 27–54. Springer (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jidi Zhao
    • 1
    • 3
  • Harold Boley
    • 2
  • Jing Dong
    • 3
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute for Information TechnologyNational Research Council of CanadaFrederictonCanada
  3. 3.East China Normal UniversityShanghaiChina

Personalised recommendations