Robot Interactive Learning through Human Assistance

  • Gonzalo FerrerEmail author
  • Anaís Garrell
  • Michael Villamizar
  • Iván Huerta
  • Alberto Sanfeliu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 48)


This chapter presents some real-life examples using the interactive multimodal framework; in this work, the robot is capable of learning through human assistance. The basic idea is to use the human feedback to improve the learning behavior of the robot when it deals with human beings.We show two different prototypes that have been developed for the following topics: interactive motion learning for robot companion; and on-line face learning using robot vision. On the one hand, the objective of the first prototype is to learn how a robot has to approach to a pedestrian who is going to a destination, minimizing the disturbances to the expected person’s path. On the other hand, the objectives of the second prototype are twofold, first, the robot invites a person to approach the robot to initiate a dialogue, and second, the robot learns the face of the person that is invited for a dialogue. The two prototypes have been tested in real-life conditions and the results are very promising.


Mobile Robot Social Robot Robot Navigation Equal Error Rate World Trade Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arras, K.O., Grzonka, S., Luber, M., Burgard, W.: Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In: IEEE International Conference on Robotics and Automation, pp. 1710–1715 (May 2008)Google Scholar
  2. 2.
    Arras, K.O., Mozos, O.M., Burgard, W.: Using boosted features for the detection of people in 2d range data. In: IEEE International Conference on Robotics and Automation, pp. 3402–3407. IEEE (April 2007)Google Scholar
  3. 3.
    Bennewitz, M., Burgard, W., Cielniak, G., Thrun, S.: Learning motion patterns of people for compliant robot motion. The International Journal of Robotics Research 24(1), 31 (2005)CrossRefGoogle Scholar
  4. 4.
    Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33(3), 367–385 (2003)CrossRefGoogle Scholar
  5. 5.
    Chung, S.Y., Huang, H.: A Mobile Robot That Understands Pedestrian Spatial Behaviors. Learning, 5861–5866 (2010)Google Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR 2005 (June 2005)Google Scholar
  7. 7.
    Dautenhahn, K.: Robots as social actors: Aurora and the case of autism. In: The Third International Cognitive Technology Conference, pp. 359–374 (1999)Google Scholar
  8. 8.
    Dautenhahn, K., Walters, M., Woods, S., Koay, K.L., Nehaniv, C.L., Sisbot, A., Alami, R., Siméon, T.: How i serve you?: a robot companion approaching a seated person in a helping context. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 172–179. ACM (2006)Google Scholar
  9. 9.
    Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: Proc. of the International Conference on Robotics and Automation, pp. 465–468 (2005)Google Scholar
  10. 10.
    Ferrer, G., Sanfeliu, A.: Comparative analysis of human motion trajectory prediction using minimum variance curvature. In: Proceedings of the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, pp. 135–136 (2011)Google Scholar
  11. 11.
    Foka, A.F., Trahanias, P.E.: Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction. International Journal of Social Robotics 2(1), 79–94 (2010)CrossRefGoogle Scholar
  12. 12.
    Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics; Automation Magazine 4(1), 23–33 (1997)CrossRefGoogle Scholar
  13. 13.
    Fraichard, T., Kuffner, J.J.: Guaranteeing motion safety for robots. Autonomous Robots (January/February 2012)Google Scholar
  14. 14.
    Garrell, A., Sanfeliu, A.: Local optimization of cooperative robot movements for guiding and regrouping people in a guiding mission. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2010)Google Scholar
  15. 15.
    Garrell, A., Sanfeliu, A.: Cooperative social robots to accompany groups of people. The International Journal on Robotics Research (2012) (published online September 4, 2012), doi: 10.1177/0278364912459278Google Scholar
  16. 16.
    Garrell, A., Sanfeliu, A., Moreno-Noguer, F.: Discrete time motion model for guiding people in urban areas using multiple robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 486–491. IEEE (2009)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley (1988)Google Scholar
  18. 18.
    Hall, E.T.: The hidden dimension, man’s use of space in public and private. The Bodley Head Ltd., Great Britain (1966)Google Scholar
  19. 19.
    Hayashi, K., Sakamoto, D., Kanda, T., Shiomi, M., Koizumi, S., Ishiguro, H., Ogasawara, T., Hagita, N.: Humanoid robots as a passive-social medium: a field experiment at a train station. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, pp. 137–144 (2007)Google Scholar
  20. 20.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. In: Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 51, pp. 4282–4286 (May 1995)Google Scholar
  21. 21.
    Henry, P., Vollmer, C., Ferris, B.: Learning to navigate through crowded environments. Robotics and Automation (2010)Google Scholar
  22. 22.
    Kalal, Z., Matas, J., Mikolajczyk, K.: P–n learning: Bootstrapping binary classifiers by structural constraints. In: Computer Vision and Pattern Recognition (2010)Google Scholar
  23. 23.
    Kanda, T., Glas, D.F., Shiomi, M., Ishiguro, H., Hagita, N.: Who will be the customer?: a social robot that anticipates people’s behavior from their trajectories. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 380–389. ACM (2008)Google Scholar
  24. 24.
    Kawamura, K., Pack, R.T., Bishay, M., Iskarous, M.: Design philosophy for service robots. Robotics and Autonomous Systems 18(1-2), 109–116 (1996)CrossRefGoogle Scholar
  25. 25.
    Luber, M., Diego Tipaldi, G., Arras, K.O.: Place-dependent people tracking. The International Journal of Robotics Research 30(3), 280 (2011)CrossRefGoogle Scholar
  26. 26.
    Michalowski, M.P., Sabanovic, S., Simmons, R.: A spatial model of engagement for a social robot, pp. 762–767 (2006)Google Scholar
  27. 27.
    Morales, Y., Satake, S., Huq, R., Glas, D., Kanda, T., Hagita, N.: How do people walk side-by-side? using a computational model of human behavior for a social robot. In: ACM/IEEE International Conference on Human-Robot Interaction, pp. 301–308 (2012)Google Scholar
  28. 28.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions Pattern Analysis and Machine Intelligence, 448–461 (2010)Google Scholar
  29. 29.
    Scholtz, J.C.: Human-robot interactions: Creating synergistic cyber froces. In: Multi-Robot Systems: from Swarms to Intelligent Automata: Proceedings from the NRL Workshop on Multi-Robot Systems, p. 177 (2002)Google Scholar
  30. 30.
    Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M.: Robox at expo. 02: A large-scale installation of personal robots. Robotics and Autonomous Systems 42(3), 203–222 (2003)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tasaki, T., Matsumoto, S., Ohba, H., Toda, M., Komatani, K., Ogata, T., Okuno, H.G.: Dynamic communication of humanoid robot with multiple people based on interaction distance. In: ROMAN, 13th IEEE International Workshop on Robot and Human Interactive Communication, pp. 71–76. IEEE (2004)Google Scholar
  32. 32.
    Trevai, C., Fukazawa, Y., Ota, J., Yuasa, H., Arai, T., Asama, H.: Cooperative exploration of mobile robots using reaction-diffusion equation on a graph. In: ICRA (2003)Google Scholar
  33. 33.
    Villamizar, M., Garrell, A., Sanfeliu, A., Moreno-Noguer, F.: Online human-assisted learning using random ferns. In: International Conference on Pattern Recognition, Tsukuba, Japan (2012)Google Scholar
  34. 34.
    Villamizar, M., Moreno-Noguer, F., Andrade-Cetto, J., Sanfeliu, A.: Shared random ferns for efficient detection of multiple categories. In: International Conference on Pattern Recognition (2010)Google Scholar
  35. 35.
    Wada, K., Shibata, T., Saito, T., Tanie, K.: Analysis of factors that bring mental effects to elderly people in robot assisted activity, vol. 2, pp. 1710–1715 (2002)Google Scholar
  36. 36.
    Wilkes, D.M., Pack, R.T., Alford, A., Kawamura, K.: Hudl, a design philosophy for socially intelligent service robots. In: American Association for Artificial Intelligence Conference (1997)Google Scholar
  37. 37.
    Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction. EPL (Europhysics Letters) 93(6), 68005 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gonzalo Ferrer
    • 1
    Email author
  • Anaís Garrell
    • 1
  • Michael Villamizar
    • 1
  • Iván Huerta
    • 1
  • Alberto Sanfeliu
    • 1
  1. 1.Institut de Robòtica i Informàtica Industrial CSIC-UPCBarcelonaSpain

Personalised recommendations