Advertisement

Coalition Configurations and the Public Good Index

  • José M. Alonso-Meijide
  • Balbina Casas-Méndez
  • M. Gloria Fiestras-Janeiro
  • Manfred J. Holler
  • Andreas Nohn
Chapter

Abstract

In games with a coalition structure, players organize themselves in coalitions that form a partition of the set of players. In games with a coalition configuration, the union of the coalitions is the whole set of players but the coalitions are not necessarily disjoint. We introduce two variations of the Public Good Index for games with a coalition configuration, provide axiomatic characterizations of them, and apply them to a real world example.

Notes

Acknowledgments

This research received financial support from the Academy of Finland, as well as from Ministerio de Ciencia e Innovación (Spain) and FEDER through Projects ECO2008-03484-C02-02, MTM2011-27731-C03-02 and MTM2011-27731-C03-03 and from Xunta de Galicia through Project INCITE09-207-064-PR.

References

  1. Albizuri, M. J., & Aurrekoetxea, J. (2006). Coalition configurations and the Banzhaf index. Social Choice and Welfare, 26, 571–596.CrossRefGoogle Scholar
  2. Albizuri, M. J., Aurrekoetxea, J., & Zarzuelo, J. M. (2006). Configuration values: Extensions of the coalitional Owened value. Games and Economic Behaviour, 57, 1–17.Google Scholar
  3. Alonso-Meijide, J. M., Casas-Méndez, B., Fiestras-Janeiro, M. G., & Holler, M. J. (2010a). Two variations of the public good index for games with a priori unions. Control and Cybernetics, 39, 839–855.Google Scholar
  4. Alonso-Meijide, J. M., Casas-Méndez, B., Fiestras-Janeiro, M. G., Holler, M. J., & Nohn, A. (2010b). Axiomatizations of public good indices with a priori unions. Social Choice and Welfare, 35, 517–533.CrossRefGoogle Scholar
  5. Andjiga, N., & Courtin, S. (2010). Coalition configuration and share functions. Working paper: CREM, Université de Caen, France.Google Scholar
  6. Banzhaf, J. F. (1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.Google Scholar
  7. Coleman, J. S. (1971), Control of collectivities and the power of a collectivity to act. In: B. Lieberman (Ed.), Social choice (pp. 269–300). New York: Gordon and Breach.Google Scholar
  8. Deegan, J., & Packel, E. W. (1978). A new index of power for simple n-person games. International Journal of Game Theory, 7, 113–123.Google Scholar
  9. Holler, M. J. (1982). Forming coalitions and measuring voting power. Political Studies, 30, 262–271.CrossRefGoogle Scholar
  10. Holler, M. J., & Nohn, A. (2009). The public good index with threats in a priori unions. Essays in Honor of Hannu Nurmi, Vol. I, Homo Oeconomicus, 26, 393–401.Google Scholar
  11. Holler, M. J., & Packel, E. W. (1983). Power, luck and the right index. Journal of Economics, 43, 21–29.CrossRefGoogle Scholar
  12. Johnston, R. J. (1978). On the measurement of power: Some reaction to Laver. Environment and Planning A, 10, 907–914.CrossRefGoogle Scholar
  13. Owen, G. (1977). Values of games with a priori unions. In R. Henn & O. Moeschlin (Eds.), Mathematical economics and game theory (pp. 76–88). Heidelberg: Springer Verlag.Google Scholar
  14. Shapley, L. S. (1953). A value for n-person games. Annals of Mathematics Studies, 28, 307–318.Google Scholar
  15. Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.CrossRefGoogle Scholar
  16. van der Laan, G., & van den Brink, R. (2002). A Banzhaf share function for cooperative games with coalition structure. Theory and Decision, 53, 61–86.CrossRefGoogle Scholar
  17. van der Laan, G., & van den Brink, R. (2005). A class of consistent share function for games with coalition structure. Games and Economic Behavior, 51, 193–212.CrossRefGoogle Scholar
  18. Winter, E. (1992). The consistency and potential for values with coalition structures. Games and Economic Behavior, 4, 132–144.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José M. Alonso-Meijide
    • 1
  • Balbina Casas-Méndez
    • 1
  • M. Gloria Fiestras-Janeiro
    • 2
  • Manfred J. Holler
    • 3
  • Andreas Nohn
    • 4
    • 5
  1. 1.Department of Statistics and Operations ResearchUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Statistics and Operations ResearchUniversity of VigoVigoSpain
  3. 3.Institute of SocioEconomicsUniversity of Hamburg, Germany and Public Choice Research CentreTurkuFinland
  4. 4.Public Choice Research CentreTurkuFinland
  5. 5.Institute of SocioEconomicsUniversity of HamburgHamburgGermany

Personalised recommendations