Knowledge-Based Technologies for Future Factory Engineering and Control

  • Christoph Legat
  • Steffen Lamparter
  • Birgit Vogel-Heuser
Part of the Studies in Computational Intelligence book series (SCI, volume 472)


Knowledge-based Automation has been a major trend in factory engineering and control research over the last years. In this paper, the main challenges addressed by knowledge-based production systems are identified and the state of the art in supporting factory engineering and control with knowledge-based technologies is investigated. The paper concludes with a discussion of white spots in the research landscape. While there is comprehensive research on applying knowledge-based technology to individual problems such as disruption detection or reactive production planning, the interaction and dependencies between those solutions is less well investigated – although a combined solution is inevitable for addressing real world challenges.


Future production systems knowledge-based systems production control disruption detection diagnostics rescheduling flexible field control software 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    European Commission: MANUFUTURE strategic research agenda - assuring the future of manufacturing in Europe (September 2006) Google Scholar
  2. 2.
    European Factory of the Future Research Association: Factories of the future PPP FoF 2020 roadmap (2012) Consultation Document Google Scholar
  3. 3.
    Geisberger, E., Cengarle, M.V., Keil, P., Niehaus, J., Thiel, C., Thönnissen-Fries, H.J.: Cyber-physical systems - driving force for innovation in mobility, health, energy and production (December 2011) Position Paper Google Scholar
  4. 4.
    Russell, R., Hall, D.: Manufacturing the future: Federal priorities for manufacturing R&D. National Science and Technology Council (March 2008) Report of the Interagency Working Group on Manufacturing R&D Committee on Technology Google Scholar
  5. 5.
    Vogel-Heuser, B., Kegel, G., Bender, K., Wucherer, K.: Global information architecture for industrial automation. ATP International - Automation Technology in Practice 51(1), 108–115 (2009)Google Scholar
  6. 6.
    Westkämper, E.: Adaptable production structures. In: Manufacturing Technologies for Machines of the Future (21st Century Technologies), pp. 87–120. Springer (2003)Google Scholar
  7. 7.
    Chryssolouris, G.: Manufacturing Systems: Theory and Practice, 2nd edn. Mechanical Engineering Series. Springer (2006)Google Scholar
  8. 8.
    Da Silveira, G., Borenstein, D., Fogliatto, F.: Mass customization: Literature review and research directions. Int. J. Prod. Econ. 72(1), 1–13 (2001)CrossRefGoogle Scholar
  9. 9.
    ElMaraghy, H.A., Wiendahl, H.P.: Changeability – an introduction. In: Changeable and Reconfigurable Manufacturing Systems. Advanced Manufacturing, pp. 3–24. Springer (2009)Google Scholar
  10. 10.
    Wiendahl, H.P., ElMaraghy, H.A., Nyhuis, P., Zäh, M.F., Wiendahl, H.H., Duffie, N.A., Brieke, M.: Changeable manufacturing - classification, design and operation. Annuals of the CIRP - Manufacturing Technology 56(2), 783–809 (2007)CrossRefGoogle Scholar
  11. 11.
    European Commission: ICT and energy efficiency - the case for manufacturing (February 2009) Recommendations of the Consultation GroupGoogle Scholar
  12. 12.
    European Technology Platform SmartGrids: Smartgrids SRA 2035 strategic research agenda - update of the smartgrids SRA 2007 for the needs by the year 2035 (March 2012) European Commission Google Scholar
  13. 13.
    Tasso, C., Arantes e Oliveira, E.R. (eds.): Development of Knowledge-Based Systems for Engineering. CISM International Centre for Mechanical Sciences, vol. 333. Springer (1998)Google Scholar
  14. 14.
    Legat, C., Neidig, J., Roshchin, M.: Model-based knowledge extraction for automated monitoring and control. In: Proceedings of the 18th IFAC World Congress, Milan (2011)Google Scholar
  15. 15.
    Carrillo, J., Franza, R.: Investing in product development and production capabilities: The crucial linkage between time-to-market and ramp-up time. Eur. J. Oper. Res. 171(2), 536–556 (2006)MATHCrossRefGoogle Scholar
  16. 16.
    Bracht, U., Masurat, T.: The digital factory between vision and reality. Comput. Ind. 56(4), 325–333 (2005)CrossRefGoogle Scholar
  17. 17.
    Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., Georgoulias, K.: Digital manufacturing: history, perspectives, and outlook. Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223(5), 451–462 (2009)CrossRefGoogle Scholar
  18. 18.
    Rocca, G.: Knowledge based engineering: Between AI and CAD. Review of a language based technology to support engineering design. Adv. Eng. Inform. (2012)Google Scholar
  19. 19.
    Gaonkar, R., Viswanadham, N.: A conceptual and analytical framework for the management of risk in supply chains. In: IEEE Int. Conf. on Robotics and Automation, pp. 2699–2704 (2004)Google Scholar
  20. 20.
    Straube, F., Vogeler, S., Bensel, P.: RFID-based supply chain event management. RFID Eurasia, 1–5 (2007)Google Scholar
  21. 21.
    Jüttner, U.: Supply chain risk management: Understanding the business requirements from a practitioner perspective. Int. J. Logist. Manag. 16(1), 120–141 (2005)CrossRefGoogle Scholar
  22. 22.
    Perrow, C.: Normal Accidents. Basic Books, New York (1984)Google Scholar
  23. 23.
    Wagner, S.M., Bode, C.: An empirical investigation into supply chain vulnerability. J. Purch. Supply Manag. 12(6), 301–312 (2006)CrossRefGoogle Scholar
  24. 24.
    Bose, I., Pal, R.: Auto-ID: Managing Anything, Anywhere, Anytime in the Supply Chain. Comm. of ACM 48(8), 100–106 (2005)CrossRefGoogle Scholar
  25. 25.
    Gaukler, G.: Item-level RFID in a retail supply chain with stock-out-based substitution. IEEE Trans. Ind. Informat. 7(2), 362–370 (2011)CrossRefGoogle Scholar
  26. 26.
    Ngai, E., Moon, K.K., Riggins, F.J., Yi, C.: RFID research: An academic literature review (1995-2005) and future research directions. Int. J. Prod. Econ. 112(2), 510–520 (2008)CrossRefGoogle Scholar
  27. 27.
    EPCglobal: EPC Information Services (EPCIS) Version 1.0.1 Specification (September 2007) Google Scholar
  28. 28.
    Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Int. J. Hum.-Comput. St. 43(5/6), 625–640 (1995)CrossRefGoogle Scholar
  29. 29.
    Lamparter, S., Legat, C., Lepratti, R., Scharnagl, J., Jordan, L.: Event-based reactive production order scheduling for manufacturing execution systems. In: 18th IFAC World Congress, Milan (2011)Google Scholar
  30. 30.
    Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE Trans. Softw. Eng. 21(9), 717–734 (1995)CrossRefGoogle Scholar
  31. 31.
    Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In: 2006 ACM SIGMOD Int. Conf. on Management of Data, pp. 407–418 (2006)Google Scholar
  32. 32.
    Wang, F., Liu, S., Liu, P.: Complex RFID event processing. VLDB Journal 18(4), 913–931 (2009)CrossRefGoogle Scholar
  33. 33.
    Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer (2005)Google Scholar
  34. 34.
    Ligeza, A.: Selected methods of knowledge engineering in systems diagnosis. In: Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W. (eds.) Fault Diagnosis - Models, Artificial Intelligence, Applications. Springer (2004)Google Scholar
  35. 35.
    Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems: Theory and Applications 10, 33–86 (2000)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Ferrarini, L., Allevi, M., Dedè, A.: A methodology for fault isolation and identification in automated equipments. In: 9th IEEE Int. Conf. on Industrial Informatics, Caparica, Lisbon, Portugal, July 26-29, pp. 157–162 (2011)Google Scholar
  37. 37.
    Flad, S., Struss, P., Voigt, T.: Automatic detection of critical points in bottling plants with a model-based diagnosis algorithm. J. I. Brewing 116(4), 354–359 (2010)CrossRefGoogle Scholar
  38. 38.
    Lo, C.H., Wong, Y., Rad, A.: Intelligent system for process supervision and fault diagnosis in dynamic physical systems. IEEE Trans. Ind. Electron. 53(2), 581–592 (2006)CrossRefGoogle Scholar
  39. 39.
    Lo, C.H., Fung, E.H.K., Wong, Y.K.: Intelligent automatic fault detection for actuator failures in aircraft. IEEE Trans. Ind. Information 5(1), 50–55 (2009)CrossRefGoogle Scholar
  40. 40.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, New York (2003)MATHGoogle Scholar
  41. 41.
    Merdan, M., Vallee, M., Lepuschitz, W., Zoitl, A.: Monitoring and diagnostics of industrial systems using automation agents. Int. J. Prod. Res. 49(5), 1497–1509 (2011)CrossRefGoogle Scholar
  42. 42.
    Geramifard, O., Xu, J.X., Zhou, J.H., Li, X.: A physically segmented hidden Markov model approach for continuous tool condition monitoring: Diagnostics & Prognostics. IEEE Trans. Ind. Informat. (2012)Google Scholar
  43. 43.
    Jirkovsky, V., Kadera, P., Obitko, M., Vrba, P.: Diagnostics of distributed intelligent control systems: Reasoning using ontologies and hidden Markov models. In: 14th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2012 (2012)Google Scholar
  44. 44.
    McIlraith, S.A.: Logic-based abductive inference. Technical Report KSL-98-19, Knowledge Systems Laboratory, University of Toronto (July 6, 1998) Google Scholar
  45. 45.
    Hubauer, T., Lamparter, S., Pirker, M.: Automata-based abduction for tractable diagnosis. In: 23rd International Workshop on Description Logics, DL 2010 (2010)Google Scholar
  46. 46.
    Hubauer, T.M., Lamparter, S., Pirker, M.: Relaxed abduction: Robust information interpretation for incomplete models. In: DL Home 24th Int. Workshop on Description Logics. CEUR Workshop Proceedings, vol. 745 (2011)Google Scholar
  47. 47.
    Hubauer, T.M., Grimm, S., Lamparter, S., Roshchin, M.: A diagnostics framework based on abductive description logic reasoning. In: 2012 IEEE Int. Conf. on Industrial Technology (2012)Google Scholar
  48. 48.
    Seitz, C., Legat, C., Neidig, J.: Querying sensor data for semantic product memories. In: Schneider, M., Kröner, A., Alvarado, J.E., Higuera, A.G., Augusto, J., Cook, D., Ikonen, V., Cech, P., Mikulecky, P., Kameas, A., Callaghan, V. (eds.) 5th Int. Conf. on Intelligent Environments Workshops, pp. 51–57 (2009)Google Scholar
  49. 49.
    Legat, C., Seitz, C., Vogel-Heuser, B.: Unified sensor data provisioning with semantic technologies. In: 16th IEEE Int. Conf. on Emerging Technologies and Factory Automation (2011)Google Scholar
  50. 50.
    Meyer, G.G., Främling, K., Holmström, J.: Intelligent products: A survey. Comput. Ind. 60(3), 137–148 (2009)CrossRefGoogle Scholar
  51. 51.
    Seitz, C., Legat, C., Liu, Z.: Flexible manufacturing control with autonomous product memories. In: 2010 IEEE Int. Conf. on Emerging Technology and Factory Automation, Bilbao, Spain (2010)Google Scholar
  52. 52.
    Hubauer, T.M., Legat, C., Seitz, C.: Empowering adaptive manufacturing with interactive diagnostics: A multi-agent approach. In: 9th Int. Conf. on Practical Applications of Agents and Multi-Agent Systems, pp. 47–56 (2011)Google Scholar
  53. 53.
    Seitz, C., Schönfelder, R.: Rule-Based OWL Reasoning for Specific Embedded Devices. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 237–252. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  54. 54.
    Seitz, C., Lamparter, S., Schöler, T., Pirker, M.: Embedded rule-based reasoning for digital product memories. In: 2010 AAAI Spring Symposium (2010)Google Scholar
  55. 55.
    Seitz, C., Fischer, J.G., Legat, C.: Flexible product-life-cycle management with digital product memories. In: IFIP WG5.1 7th Int. Product Lifecycle Management Conference, Bremen, Germany. IFIP (July 2010)Google Scholar
  56. 56.
    Legat, C., Hubauer, T.M., Seitz, C.: Integrated diagnosis for adaptive service-oriented manufacturing control with autonomous products. In: 2011 Int. Conf. on Industrial Engineering and Systems Management (2011)Google Scholar
  57. 57.
    International Electronic Commission: IEC 62264 - Enterprise-control system integration (2003) Google Scholar
  58. 58.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann (2004)Google Scholar
  59. 59.
    Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)Google Scholar
  60. 60.
    Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 7th edn. McGraw-Hill College (2001)Google Scholar
  61. 61.
    Barbati, M., Bruno, G., Genovese, A.: Applications of agent-based models for optimization problems: A literature review. Expert Syst. Appl. 39(5), 6020–6028 (2011)CrossRefGoogle Scholar
  62. 62.
    Onori, M., Barata, J.: Evolvable production systems: new domains within mechatronic production equipment. In: 2010 IEEE Int. Symposium on Industrial Electronics, Bari, July 4-7, pp. 2653–2657 (2010)Google Scholar
  63. 63.
    Frei, R., Serugendo, G.D.M.: Self-organizing assembly systems. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 41(6), 885–897 (2011)CrossRefGoogle Scholar
  64. 64.
    Chrwan-Jyh, H.: Evaluating the impact of operating environments on mrp system nervousness. Int. J. Prod. Res. 27(7), 1115–1135 (1989)CrossRefGoogle Scholar
  65. 65.
    Li, Z., Ierapetritou, M.: Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering 32(4), 715–727 (2001)CrossRefGoogle Scholar
  66. 66.
    Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Vieira, G., Herrmann, J., Lin, E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Sched. 6(1), 39–62 (2003)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Reisman, A., Kumar, A., Motwani, J.: Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Trans. Eng. Management 44(3), 316–329 (2003)CrossRefGoogle Scholar
  69. 69.
    Lawler, E., Lenstra, J., Kan, A., Shmoys, D.: Sequencing and scheduling: Algorithms and complexity. Handbooks in Operations Research and Management Science 4, 445–522 (1993)CrossRefGoogle Scholar
  70. 70.
    Karageorgos, A., Mehandjiev, N., Weichhart, G., Hämmerle, A.: Agent-based optimisation of logistics and production planning. Eng. Appl. Artif. Intel. 16(4), 335–348 (2003)CrossRefGoogle Scholar
  71. 71.
    Shen, W., Hao, Q., Yoon, H., Norrie, D.: Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced Engineering Information 20(4), 415–431 (2006)CrossRefGoogle Scholar
  72. 72.
    Leitão, P., Restivo, F.: A holonic approach to dynamic manufacturing scheduling. Robotics and Computer-Integrated Manufacturing 24(5), 625–634 (2008)CrossRefGoogle Scholar
  73. 73.
    Lüder, A., Klostermeyer, A., Peschke, J., Bratoukhine, A., Sauter, T.: Distributed automation: Pabadis versus hms. IEEE Trans. Ind. Informat. 1(1), 31–38 (2005)CrossRefGoogle Scholar
  74. 74.
    Trentesaux, D.: Distributed control of production systems. Eng. Appl. Artif. Intel. 22(7), 971–978 (2009)CrossRefGoogle Scholar
  75. 75.
    Leitão, P.: Self-organization in manufacturing systems: challenges and opportunities. In: Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2008, pp. 174–179. IEEE (2008)Google Scholar
  76. 76.
    Legat, C., Heinecke, G.: Dynamic reconfiguration of manufacturing systems using its control capabilities. In: 21st Int. Conf. on Production Research (2011)Google Scholar
  77. 77.
    Heinecke, G., Köber, J., Lepratti, R., Lamparter, S., Kunz, A.: Event-driven order rescheduling model for just-in-sequence deliveries to a mixed-model assembly line. In: Advances in Production Management Systems 2012 International Conference (2012)Google Scholar
  78. 78.
    Heinecke, G., Köber, J., Kunz, A., Lamparter, S.: Modeling the basic cause-effect relationship between supply chain events and performance. In: 3rd Int. Conf. on Dynamics in Logistics (2012) Google Scholar
  79. 79.
    Heinecke, G., Migge, B., Kunz, A., Lamparter, S., Lepratti, R.: Measuring the performance-related effect of supply chain events on manufacturing operations. In: P&OM World Conference 2012 (2012)Google Scholar
  80. 80.
    Brennan, R., Vrba, P., Tichy, P., Zoitl, A., Sünder, C., Strasser, T., Marik, V.: Developments in dynamic and intelligent reconfiguration of industrial automation. Comput. Ind. 59, 533–547 (2008)CrossRefGoogle Scholar
  81. 81.
    Brennan, R.W.: Toward real-time distributed intelligent control: A survey of research themes and applications. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 37(5), 744–765 (2007)CrossRefGoogle Scholar
  82. 82.
    International Electronic Commission: IEC 61131-3: Programmable Controllers - Part 3: Programming Languages (December 2009)Google Scholar
  83. 83.
    Metzger, M., Polaków, G.: A survey on applications of agent technology in industrial process control. IEEE Trans. Ind. Informat. 7(4), 570–581 (2011)CrossRefGoogle Scholar
  84. 84.
    Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEE Trans. Ind. Informat. 1(1), 62–70 (2005)CrossRefGoogle Scholar
  85. 85.
    Vrba, P., Tichy, P., Marik, V., Hall, K.H., Staron, R.J., Maturana, F.P., Kadera, P.: Rockwell automation’s holonic and multi-agent control systems compendium. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 41(1), 14–30 (2011)CrossRefGoogle Scholar
  86. 86.
    Colombo, A.W., Schoop, R., Neubert, R.: An agent-based intelligent control platform for industrial holonic manufacturing systems. IEEE Trans. Ind. Electron. 53(1), 322–337 (2006)CrossRefGoogle Scholar
  87. 87.
    Borangiu, T., Gilbert, P., Ivanescu, N.A., Rosu, A.: An implementation framework for holonic manufacturing control with multiple robot-vision stations. Eng. Appl. Artif. Intel. 22, 505–521 (2009)CrossRefGoogle Scholar
  88. 88.
    Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: An updated review. Adv. Eng. Inform. 20(4), 415–431 (2006)CrossRefGoogle Scholar
  89. 89.
    Leitao, P.: Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl. Artif. Intel. 22(7), 979–991 (2009)CrossRefGoogle Scholar
  90. 90.
    Vrba, P., Marik, V.: Capabilities of dynamic reconfiguration of multiagent-based industrial control systems. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans 40(2), 213–223 (2010)CrossRefGoogle Scholar
  91. 91.
    International Electronic Commission: IEC 61499 - Function Blocks for industrial control systems (June 2005)Google Scholar
  92. 92.
    Lepuschitz, W., Zoitl, A., Vallée, M., Merdan, M.: Toward self-reconfiguration of manufacturing systems using automation agents. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 41(1), 52–69 (2011)CrossRefGoogle Scholar
  93. 93.
    Black, G., Vyatkin, V.: Intelligent component-based automation of baggage handling systems with IEC 61499. IEEE Trans. Autom. Sci. Eng. 7(2), 337–351 (2010)CrossRefGoogle Scholar
  94. 94.
    Romanenko, A., Santos, L.O., Afonso, P.A.: Application of agent technology concepts to the design of a fault-tolerant control system. Control Eng. Pract. 15(4), 459–469 (2007)CrossRefGoogle Scholar
  95. 95.
    Wannagat, A., Vogel-Heuser, B.: Increasing flexibility and availability of manufacturing systems - dynamic reconfiguration of automation software at runtime on sensor faults. In: 9th IFAC Workshop on Intelligent Manufacturing Systems (2008)Google Scholar
  96. 96.
    Wannagat, A., Vogel-Heuser, B.: Agent oriented software-development for networked embedded systems with real time and dependability requirements the domain of automation. In: Proceedings of the 17th IFAC World Congress, Seoul (2008)Google Scholar
  97. 97.
    de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., Savio, D.: SOCRADES: A Web Service Based Shop Floor Integration Infrastructure. In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT 2008. LNCS, vol. 4952, pp. 50–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  98. 98.
    Cândido, G., Colombo, A.W., Barata, J., Jammes, F.: Service-oriented infrastructure to support the deployment of evolvable production systems. IEEE Trans. Ind. Informat. 7(4), 759–767 (2011)CrossRefGoogle Scholar
  99. 99.
    Zühlke, D., Ollinger, L.: Agile Automation Systems Based on Cyber-Physical Systems and Service-Oriented Architectures. In: Lee, G. (ed.) ICAR 2011. LNEE, vol. 122, pp. 567–574. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  100. 100.
    Legat, C., Schütz, D., Vogel-Heuser, B.: Automatic generation of field control strategies for supporting (re-)engineering of manufacturing systems. In: 14th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2012, Bucharest (2012)Google Scholar
  101. 101.
    Schäfer, C.: On the modularity of manufacturing systems. IEEE Industrial Electronics Magazine 1(3), 20–27Google Scholar
  102. 102.
    Jazdi, N., Maga, C., Göhner, P.: Reusable models in industrial automation: experiences in defining appropriate levels of granularity. In: Proc. of the 18th IFAC World Congress, pp. 9145–9150 (2011)Google Scholar
  103. 103.
    Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel, H.: Reconfigurable manufacturing systems. CIRP Annals-Manufacturing Technology 48(2), 527–540 (1999)CrossRefGoogle Scholar
  104. 104.
    Feldmann, S., Fuchs, J., Vogel-Heuser, B.: Modularity, variant and version management in plant automation – future challenges and state of the art. In: Design Conference, Dubrovnik, Croatia, pp. 1689–1698 (2012)Google Scholar
  105. 105.
    Rösch, S., Schütz, D., Bayrak, G., Vogel-Heuser, B.: Supporting integrated development of closed-loop PLC control software for production systems. In: 38th Conference of the IEEE Industrial Electronics Society, IECON (2012)Google Scholar
  106. 106.
    Lüder, A., Estevez, E., Hundt, L., Marcos, M.: Automatic transformation of logic models within engineering of embedded mechatronic units. Int. J. Adv. Manuf. Tech. 54(9-12), 1077–1039 (2011)Google Scholar
  107. 107.
    Thramboulidis, K.: The 3+1 SysML view-model in model integrated mechatronics. Journal of Software Engineering and Applications 3, 109–118 (2010)CrossRefGoogle Scholar
  108. 108.
    Secchi, C., Bonfe, M., Fantuzzi, C.: On the use of UML for modelling mechatronic systems. IEEE Trans. Autom. Sci. Eng. 4(1), 105–113 (2007)CrossRefGoogle Scholar
  109. 109.
    Bassi, L., Secchi, C., Bonfé, M., Fantuzzi, C.: A SysML-based methodology for manufacturing machinery modelling and design. IEEE/ASME Trans. Mechatronics 16(6), 1049–1062 (2011)CrossRefGoogle Scholar
  110. 110.
    Mendes, J.M., Leitao, P., Colombo, A.W., Restivo, F.: High-level Petri nets for the process description and control in service-oriented manufacturing systems. Int. J. Prod. Res. 50(6), 1650–1665 (2012)CrossRefGoogle Scholar
  111. 111.
    Estevez, E., Marcos, M.: Model based validation of industrial control systems. IEEE Trans. Ind. Informat. 8(2), 302–310 (2012)CrossRefGoogle Scholar
  112. 112.
    Soliman, D., Thramboulidis, K., Frey, G.: Function block diagram for timed automata transformation based on formal models. In: 14th IFAC Symposium on Information Control Problems in Manufacturing, vol. 14, pp. 1653–1659 (2012)Google Scholar
  113. 113.
    Witsch, D., Vogel-Heuser, B.: PLC-state charts: An approach to integrate UML-state charts in open-loop control engineering–aspects on behavioural semantics and model-checking. In: 18th IFAC World Congress (2011)Google Scholar
  114. 114.
    Vyatkin, V., Hanisch, H.M., Pang, C., Yang, C.H.: Closed-loop modelling in future automation system engineering and validation. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 39(1), 17–28 (2009)CrossRefGoogle Scholar
  115. 115.
    Sünder, C., Vyatkin, V., Zoitl, A.: Formal validation of downtimeless system evolution in embedded automation controllers. ACM T. Embed. Comput. S. (2011)Google Scholar
  116. 116.
    Estevez, E., Marcos, M., Orive, D.: Automatic generation of PLC automation projects from component-based models. Int. J. Adv. Manuf. Tech. 35(5-6), 527–540 (2007)CrossRefGoogle Scholar
  117. 117.
    Vogel-Heuser, B., Witsch, D., Katzke, U.: Automatic code generation from a UML model to IEC 61131-3 and system configuration tools. In: International Conference on Control and Automation, ICCA 2005, vol. 2, pp. 1034–1039. IEEE (2005)Google Scholar
  118. 118.
    Brecher, C., Kempf, T., Herfs, W.: Cognitive control technology for a self-optimizing robot based assembly cell. In: ASME 2008 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., pp. 1423–1431 (August 2008)Google Scholar
  119. 119.
    Mosemann, H., Wahl, F.M.: Automatic decomposition of planned assembly sequences into skill primitives. IEEE Trans. Robot. Autom. 17(5), 709–717 (2001)CrossRefGoogle Scholar
  120. 120.
    Bengtsson, K., Bergegard, P., Thorstensson, C., Lennartson, B., Akesson, K., Yuan, C., Miremadi, S., Falkman, P.: Sequence planning using multiple and coordinated sequences of operations. IEEE Trans. Autom. Sci. Eng. 9(2), 308–318 (2012)CrossRefGoogle Scholar
  121. 121.
    Martinez Lastra, J.L., Delamer, I.M.: Ontologies for Production Automation. In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891, pp. 276–289. Springer, Heidelberg (2009)Google Scholar
  122. 122.
    Orozco, O.J.L., Martinez Lastra, J.L.: Using semantic web technologies to describe automation objects. International Journal of Manufacturing Research 1(4), 482–503 (2007)CrossRefGoogle Scholar
  123. 123.
    Dibowski, H., Kabitzsch, K.: Ontology-based device descriptions and triple store based device repository for automation devices. In: 2010 IEEE Conf. on Emerging Technologies and Factory Automation. IEEE (2010)Google Scholar
  124. 124.
    Lin, H., Harding, J., Shahbaz, M.: Manufacturing system engineering ontology for semantic interoperability across extended project teams. Int. Journal of Production Research 42(24), 5099–5118 (2004)CrossRefGoogle Scholar
  125. 125.
    Obermeier, M., Braun, S., Sommer, K., Vogel-Heuser, B.: Fundamental Aspects Concerning the Usability Evaluation of Model-Driven Object Oriented Programming Approaches in Machine and Plant Automation. In: Marcus, A. (ed.) HCII 2011 and DUXU 2011, Part II. LNCS, vol. 6770, pp. 497–506. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  126. 126.
    Schütz, D., Legat, C., Vogel-Heuser, B.: On modelling the state-space of manufacturing systems using UML. In: Proc. of 14th IFAC Symposium on Information Control Problems in Manufacturing, Bucharest, IFAC PapersOnLine (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Legat
    • 1
  • Steffen Lamparter
    • 1
  • Birgit Vogel-Heuser
    • 2
  1. 1.Corporate TechnologySiemens AGMunichGermany
  2. 2.Institute of Automation and Information SystemsTechnical University of MunichMunichGermany

Personalised recommendations