Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 472))

Abstract

The wheeled mobile robots used in the flexible manufacturing systems act in an environment with static and dynamic obstacles. This paper proposes a new control method for the wheeled mobile robots movement in the presence of static and dynamic obstacles. The dynamic model used for steering and obstacle avoidance is the differential equations system. The environment is the commonly used laser range finder (LRF) system. The obstacle avoidance control is solved using the trajectory tracking control. The sliding mode control approach is used for the trajectory tracking problem. The effectiveness of the proposed local navigational system in an unknown environment with static and moving objects, corresponding to flexible manufacturing system, is proved through simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, J.L., Seiger, B.A., Flynn, A.M.: Mobile Robots: Inspiration to Implementation, 2nd edn. A.K. Peters Ltd., USA (1998)

    Google Scholar 

  2. Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation 7, 278–288 (1991)

    Article  Google Scholar 

  3. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation 8, 501–518 (1992)

    Article  Google Scholar 

  4. Seki, H., Kamiya, Y., Hikizu, M.: Real-time obstacle avoidance using potential field for a nonholonomic vehicle. In: Factory Automation, pp. 523–542. InTech (2010)

    Google Scholar 

  5. Sussmann, H.J., Liu, W.: Limits of Highly Oscillatory Controls and the Approximation of General Paths by Admissible Trajectories - Tech. Rep. Rutgers Ctr. Systems and Control, Piscataway (1991)

    Google Scholar 

  6. Fliess, M., Levine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems: Introductory theory and examples. Intr. J. Control 61, 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: Steering using sinusoids. IEEE Transactions on Automatic Control 38, 700–716 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernandes, C., Gurvits, L., Li, Z.: Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Transactions on Automatic Control 39, 450–463 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sundar, S., Shiller, Z.: Optimal obstacle avoidance based on the hamiltonjacobibellman equation. IEEE Transactions on Robotics and Automation 13, 305–310 (1997)

    Article  Google Scholar 

  10. Utkin, V.I.: Sliding modes in optimization and control. Springer, New York (1992)

    Book  MATH  Google Scholar 

  11. Utkin, V.I., Guldner, J., Shi, J.: Sliding mode control in electromechanical systems. Taylor and Francis, London (1999)

    Google Scholar 

  12. Slotine, J., Li, W.: Applied Nonliner Control. Prentice Hall, New Jersey (1991)

    Google Scholar 

  13. Chwa, D.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology 12, 637–644 (2004)

    Article  Google Scholar 

  14. Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation 15, 578–587 (1999)

    Article  Google Scholar 

  15. Chwa, D., Hong, S., Song, B.: Robust posture stabilization of wheeled mobile robots in polar coordinates. In: The 17th International Symposium on Mathematical Theory of Networks and Systems, vol. 39, pp. 343–348 (2006)

    Google Scholar 

  16. Floquet, T., Barbot, J., Perruquetti, W.: Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems. Automatica 39, 1077–1083 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Solea, R., Cernega, D.: Sliding Mode Control for Trajectory Tracking Problem - Performance Evaluation. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 865–874. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Gao, W., Hung, J.: Variable structure control of nonlinear systems: A new approach. IEEE Transactions on Industrial Electronics 40, 45–55 (1993)

    Article  Google Scholar 

  19. Slotine, J., Sastry, S.: Tracking Control of Nonlinear Systems Using Sliding Surfaces, with Application to Robot Manipulators. Massachusetts Institute of Technology, Cambridge (1982)

    Google Scholar 

  20. Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance, and route selection. Journal of Experimental Psychology: Human Perception and Performance 39, 343–362 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Răzvan Şolea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Şolea, R., Cernega, D.C. (2013). Obstacle Avoidance for Trajectory Tracking Control of Wheeled Mobile Robots. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds) Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35852-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35852-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35851-7

  • Online ISBN: 978-3-642-35852-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics